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Jacquet-Rallis relative trace formula

E/F quadratic extension of number fields, η : A×
F → {±1} quadratic

character.

G = ResE/F (GLn ×GLn+1).

Subgroups of G :

H1 = {(x ,

(
x

1

)
) | x ∈ GLn,E}, H2 = GLn,F ×GLn+1,F .

f ∈ S(G (AF )) a test function, Kf (x , y) =
∑

γ∈G(F ) f (x
−1γy)

automorphic kernel function.

Jacquet-Rallis RTF:

I (f ) :=

∫
[H1]

∫
[H2]

Kf (x , y)η(y)dxdy .

4



Jacquet-Rallis relative trace formula

E/F quadratic extension of number fields, η : A×
F → {±1} quadratic

character.

G = ResE/F (GLn ×GLn+1).

Subgroups of G :

H1 = {(x ,

(
x

1

)
) | x ∈ GLn,E}, H2 = GLn,F ×GLn+1,F .

f ∈ S(G (AF )) a test function, Kf (x , y) =
∑

γ∈G(F ) f (x
−1γy)

automorphic kernel function.

Jacquet-Rallis RTF:

I (f ) :=

∫
[H1]

∫
[H2]

Kf (x , y)η(y)dxdy .

5



Jacquet-Rallis relative trace formula

E/F quadratic extension of number fields, η : A×
F → {±1} quadratic

character.

G = ResE/F (GLn ×GLn+1).

Subgroups of G :

H1 = {(x ,

(
x

1

)
) | x ∈ GLn,E}, H2 = GLn,F ×GLn+1,F .

f ∈ S(G (AF )) a test function, Kf (x , y) =
∑

γ∈G(F ) f (x
−1γy)

automorphic kernel function.

Jacquet-Rallis RTF:

I (f ) :=

∫
[H1]

∫
[H2]

Kf (x , y)η(y)dxdy .

6



Jacquet-Rallis relative trace formula

I (f ) :=

∫
[H1]

∫
[H2]

Kf (x , y)η(y)dxdy .

Jacquet-Rallis RTF
+more
====⇒ the global GGP conjecture for Un × Un+2m+1.

Studies on Jacquet-Rallis RTF:

Smooth Transfer: Zhang, Xue.

Fundamental lemma: Yun–Gordan, Beuzart-Plessis, Zhang.

Regularization: Zydor.

Singular terms: Chaudoaurd–Zydor,

Beuzart-Plessis–Chaudouard–Zydor, Beuzart-Plessis–Chaudouard.
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RTF on the Lie algebra

f ∈ S(gln+1(AF )), h ∈ [GLn]

Kf (h) =
∑

X∈gln+1(F )

f (h−1Xh).

Lie algebra analog:

I (f ) :=

∫
[GLn]

Kf (h)η(h)dh.

The geometric side can be reduced to Lie algebra.

A := gln+1 /GLn the GIT quotient, a ∈ A(F ).

Kf ,a(h) :=
∑
X 7→a

f (h−1Xh), Ia(f ) :=

∫
[GLn]

Kf ,a(h)η(h)dh.

Geometric expansion:

I (f ) =
∑

a∈A(F )

Ia(f )
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Regularization

F := {semistandard psgps of GLn+1 s.t. P ∩ GLn is standard}.

P = MN, Pn := P ∩ GLn, p = mP ⊕ nP .

Kf ,P,a(h) =
∑

M∈mP(F )

∫
nP(A)

f (h−1(M + N)h)dh.

T truncation parameter,

KT
a (f ) :=

∑
P∈F

εP
∑

γ∈Pn(F )\GLn(F )

τ̂P(HP(γh)− TP)Kf ,P,a(γh).

ITa (f ) :=

∫
[GLn]

KT
a (h)η(h)dh.

Zydor: absolutely convergent, exponential polynomial in T , pure

polynomial term is a constant =: Ia(f ).
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Geometric terms

X ∈ gln+1(F ) is (relatively) regular if its stabilizer if trivial.

X is (relatively) regular semisimple, if it is regular and the orbit of X

is closed.

a ∈ A(F ) is regular semisimple if it is the image of a regular

semisimple element. In this case, choose any X 7→ a

Ia(f ) = Orb(X , f ) =

∫
GLn(A)

f (h−1Xh)η(h)dh.

Q: Can we describe Ia(f ) for general a?

Chaudouard–Zydor: global semisimple descent, reduce to study Ia(f )

for nilpotent a.

Today: study the “regular part” of Ia(f ) for any a ∈ A(F ).
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Regular orbit

X ∈ gln+1(F ) is (relatively) regular if its stabilizer if trivial.

a ∈ A(F ), gln+1,a := the fiber of a.

There are finitely many regular orbits in gln+1,a.

One special regular orbit: X is called +-regular if

en+1,Xen+1, · · · ,X nen+1 are linearly independent.

Any a, there is a unique +-regular orbit in gln+1,a

Example

a r.s.s, +-regular orbit = the unique orbit above a.

a = 0,X = the principal Jordan block (1 above the diagonal)
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Regular contribution

Theorem (L. 24)

If f is supported in +-regular open subset. For a ∈ A(F ), choose X 7→ a,

then the integral

Orb(X , f , s) =

∫
GLn(A)

f (h−1Xh)η(h)|det h|sdh

is convergent when Re(s) ≪ 0, and has analytic continuation to s = 0.

Moreover

Ia(f ) = Orb(X , f , 0).

We have a more general theorem for f supported in the regular subset.

Ia(f ) =
∑
i

Orb(Xi , f , 0),

the sum runs through regular orbits above a.
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Sketch of the proof

Zydor:

Ia(f , s) :=

∫ reg

[GLn]
Kf ,a(x)η(x)|x |sdx ,

defined as constant term of the exponential polynomial

ITa (f , s) :=

∫
[GLn]

KT
f ,a(x)η(x)|x |sdx .

Show that under the assumption

lim
T→∞

ITa (f , s) = I (f , s) = Orb(X , f , s)

when Re(s) ≪ 0, by computing explicitly the exponents.
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Local theory

The global Orb(X , f , s) is Eulerian, leading to the study of local integrals.

E/F quadratic ext’n of local fields, η : F× → {±1} quadratic char.

f ∈ S(gln+1(F )).

X be a +-regular element 7→ a ∈ A(F ).

We consider

Orb(X , f , s) :=

∫
GLn(F )

f (h−1Xh)η(h)|det h|sdh.

Fact:

Orb(X , f , s) is convergent for Re(s) < 1− 1
n , and has meromorphic

continuation to C.
Poles are controlled by an abelian L-function: ∃La(s) = g.c.d

Orb♮(X , f , s) := Orb(X , f , s)/La(s) is entire.
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Local transfer

Example

a r.s.s, La(s) = 1.

a = 0, La(s) = L(−s, η)L(−2s − 1, η2) · · · L(−ns − n + 1, ηn).

Orbital integral can be compared to orbital integral on the unitary group.

H isom. class of n-dim Hermitian spaces.

V ∈ H, uV := {X ∈ EndE (V ) | X self-adjoint}, U(V ) acts on uV by

conjugation.

V ∈ H, V ′ := V ⊕ E . Consider U(V ) action on uV
′
.

The GIT quotient uV
′
/U(V ) can be identified with A.

We have similar notion of regular and regular semisimple element.
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Local transfer contd.

Fact: for any a ∈ A(F ) r.s.s., there exists a unique V ∈ H such that

uV
′

a (F ) (the fiber of a) ̸= ∅.

f ∈ S(gln+1(F )) and f V ∈ S(uV ′
)(F ). f and f V are transfer if for any

a ∈ A(F ) r.s.s., we have

Orb(X , f )ω(X ) = Orb(XV , f V ),

where

V ∈ H such that uV
′

a (F ) ̸= ∅.

ω(X ) is the transfer factor (s.t. Orb only depends on a but not X ).

XV 7→ a and Orb(XV , f V ) =
∫
U(V )(F ) f

V (h−1XV h)dh.
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Local singular transfer

Our local theorem states that when f and (f V )V∈H matches, then for any

a ∈ A(F ), the regular orbital integral also matches with the semisimple

orbital integral.

Theorem (L. 24)

For matching f and (f V )V∈H, we have

Orb♮(X , f , 0)ω(X ) =
∑
(Y ,V )

cYOrb(Y , f V ),

where the sum runs through (Y ,V ), s.t. Y is a semisimple orbits in uV
′

a .

regular orbital integral on GLn = (stable) semisimple orbital integral on Un.
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Sketch of the proof

Zhang: Relative semisimple descent:

regular orb. = r.s.s orb. × reg. unipotent orb.

Reduce the the r.s.s and the unipotent case.

r.s.s. case follows from the definition.

Beuzart-Plessis: regular unipotent case using Fourier transform

commutes with transfer (due to Zhang, Xue).
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Local singular transfer revisited

Local singular transfer:

Orb♮(X , f , 0)ω(X ) =
∑
(Y ,V )

cYOrb(Y , f V ),

Specialize to X ∈ gln+1(F ) of the form

X =

(
A v

0 0

)

On the RHS, semisimple Y 7→ a lies in uV (F ) ⊂ uV
′
(F ).

RHS = usual stable orbital integral! (cY = Kottwitz sign of stabilizer)

Regular orbital integral on gln ×F n ↔ Stable orbital integral on uV .
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Globalization

Design an RTF that realizes the above local comparison.

E/F quad. ext’n of number fields, η : A×
F → {±1} quad. character.

G = ResE/F GLn,E , H = GLn,F .

f ∈ S(GLn(AE )),Φ ∈ S(An).

Consider

I (f ⊗ Φ, s) =

∫
[GLn]

∫
[GLn]

Kf (x , y)Θ(x ,Φ)η(x)nη(y)n+1|x |sdxdy .

where Θ(x ,Φ) =
∑

v∈F n Φ(xv).
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Summary

Geom. side global J-R Local reg. orb on gln+1

Local reg. orb on gln×F na new RTF

40



Geometric expansion

I (f ⊗ Φ, s) =

∫
[H]

∫
[H]

Kf (x , y)Θ(x ,Φ)η(x)nη(y)n+1|x |sdxdy .

Geometrically, GLn,E ×F n/GLn ×GLn, the action is given by

(g , v) · (x , y) = (x−1gy , x−1v)

Facts:

Infinitesimally looks like (gln ×F n)/GLn,

∃ canonical identification

GLn,E ×F n/GLn ×GLn ∼= U(V )/conjU(V )

Upshot: it can be compared to the STF on the unitary group!

41



Geometric expansion

I (f ⊗ Φ, s) =

∫
[H]

∫
[H]

Kf (x , y)Θ(x ,Φ)η(x)nη(y)n+1|x |sdxdy .

Geometrically, GLn,E ×F n/GLn ×GLn, the action is given by

(g , v) · (x , y) = (x−1gy , x−1v)

Facts:

Infinitesimally looks like (gln ×F n)/GLn,

∃ canonical identification

GLn,E ×F n/GLn ×GLn ∼= U(V )/conjU(V )

Upshot: it can be compared to the STF on the unitary group!

42



Geometric expansion

I (f ⊗ Φ, s) =

∫
[H]

∫
[H]

Kf (x , y)Θ(x ,Φ)η(x)nη(y)n+1|x |sdxdy .

Geometrically, GLn,E ×F n/GLn ×GLn, the action is given by

(g , v) · (x , y) = (x−1gy , x−1v)

Facts:

Infinitesimally looks like (gln ×F n)/GLn,

∃ canonical identification

GLn,E ×F n/GLn ×GLn ∼= U(V )/conjU(V )

Upshot: it can be compared to the STF on the unitary group!

43



Geometric expansion

I (f ⊗ Φ, s) =

∫
[H]

∫
[H]

Kf (x , y)Θ(x ,Φ)η(x)nη(y)n+1|x |sdxdy .

Geometrically, GLn,E ×F n/GLn ×GLn, the action is given by

(g , v) · (x , y) = (x−1gy , x−1v)

Facts:

Infinitesimally looks like (gln ×F n)/GLn,

∃ canonical identification

GLn,E ×F n/GLn ×GLn ∼= U(V )/conjU(V )

Upshot: it can be compared to the STF on the unitary group!

44



Regularization

F := {semistandard psgps of GLn+1 s.t. P ∩ GLn is standard}.

P ∈ F → a partial Θ-series PΘ(x ,Φ).

KT
f⊗Φ(x , y) =∑

P∈F
εP

∑
γ,δ∈Pn(F )\GLn(F )

τ̂P(HP(γx)− TP)KPn(γx , δy)PΘ(γx ,Φ)

IT (f ⊗ Φ, s) :=

∫
[GLn]

∫
[GLn]

KT
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Partial Θ-function

F := {semistandard psgps of GLn+1 s.t. P ∩ GLn is standard}.

VMP
:= the last row of mP , VNP

:= the last row of nP .

PΘ(x ,Φ) :=
∑

M∈VMP
(F )

∫
VNP

(A)
Φ(x(M + N))dN.

Example

P = GLn+1, the usual Θ function.

P lower triangular, Levi GLn ×GL1, PΘ(x ,Φ) = Φ(0).

P upper triangular, Levi GLn ×GL1, PΘ(x ,Φ) = |x |−1Φ̂(0).

Partial Θ-function also appears in a joint work with Boisseau and Xue on

the GGP conjecture for Fourier-Jacobi periods.
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Test functions

f ⊗ Φ = ⊗v (fv ⊗ Φv ) ∈ S(GLn(AE )× An
F ) is a nice test function, if

∃ a non-Arch v1 s.t. fv1 is truncated matrix coefficient of

supercuspidal representation.

∃ a non-Arch v2 ̸= v1 split in E s.t supp(fv2) ⊂ the elliptic locus.

Let V0 be the split Hermitian space, U := U(V0).

We say that f = ⊗fv ∈ S(U(A)) is a nice test function, if

∃ a non-Arch v1 s.t. fv1 is truncated matrix coefficient of

supercuspidal representation.

∃ a non-Arch v2 ̸= v1 split in E s.t supp(fv2) ⊂ the elliptic locus.
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Comparison

Theorem (L. 2025)

Let f ⊗ Φ and f V0 be matching nice test functions. Then

The distribution I (f ⊗ Φ, s) is holomorphic at s = 0.

We have 2I (f ⊗ Φ, 0) = S(f V0).

Some remarks:

The distribution I (f ⊗ Φ, s) on S(GLn(AE )× An
F ) is stable in the

sense that

s ̸= 0, 1, g ∈ GLn(AF ) =⇒ I (R(g)(f ⊗ Φ), s) = η(g)|g |s I (f ⊗ Φ, s).

However, it has pole at s = 0.

One expects there is some way to stabilize the GLn and compare full

trace formulas.
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Diagonal cycle

Trace formula on U =⇒ relative trace formula for U\U × U/U ↔
diagonal period.

Arithmetic version:

E/F CM ext’n of number field.

V n-dim’l Herm space, signature (n − 1, 1), (n, 0), · · · , (n, 0).

X := ShH , X integral model over OF , abs. dim = n.

X ↪→ X×OF
X arithmetic diagonal cycle, ∆ ∈ ĈH

n−1
(X× X).

Conjecture(Chen-L.-Zhang): π tempered cohomological,

⟨∆π,∆π, ω̂⟩ ∼ L′(1, π,Ad),

⟨·, ·⟩ denotes the Arakelov intersection pairing, ω̂ is the (metrized) Hodge

bundle.
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Diagonal cycle cont’d

Lapid-Mao conjecture: for φ ∈ π with Wφ(1) = 1, then

⟨φ,φ⟩ ∼ L(1, π,Ad).

(n odd, Beuzart-Plessis–Chaudouard, n even, Boisseau-L.-Xue.)

Our conjecture

⟨∆π,∆π, ω̂⟩ ∼ L′(1, π,Ad),

can be regarded as an arithmetic analog.

Theorem (Chen-L.-Zhang)

The conjecture holds when n = 2.

n = 1: Faltings height of CM abelian variety (average Colmez conj.)

Relative Langlands duality(Ben-Zvi–Sakellaridis-Venkatesh) provides a

general framework for periods (automorphic/geometric/arithmetic).
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Proof

Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture

for Bessel case (Disegni–Zhang).

In our setting, consider the arithmetic distribution J(f ) = ⟨R(f )∆,∆, ω̂⟩
Main proposition: when f and (f ′ ⊗ Φ) are transfer, then

J(f ) =
d

ds
I (f ′ ⊗ Φ, 0)

π-part of LHS: the intersection pairing we’re interested in.

π-part of RHS: L′(0, π,Ad)
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Stable character

E/F local, ϕ a tempered L-parameter of U.

For each V , given f V ∈ S(U(V )(F )).

Sϕ((f
V )) =

∑
V∈H

∑
π∈Πϕ(U(V ))

Θπ(f
V ).

Stable character in a Vogan parket.

For fv ∈ S(GLn(E )) and Φ ∈ S(F n), we put

IΠv (fv ⊗ Φv , s) =
∑

W∈BΠv

Zn(R(fv )W ,Φv , s)β(W ),

and a normalized version

I ♮Πv
(fv ⊗ Φv , s) =

∑
W∈BΠv

Z ♮
n(R(fv )W ,Φv , s)β

♮(W ),

Z local Flicker-Rallis zeta integral, β local Flicker-Rallis period.
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Spectral comparison

Theorem (L. 25)

There exists C (ϕ) ∈ C such that

Sϕ((f
V )) = C (ϕ)I ♮Π(f ⊗ Φ, 0).

holds for all matching of function (f V ) and f ⊗ Φ.

Proof: globalization and using the global comparison
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Thank you for your attention!!
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