A relative trace formula approach to the stable trace formula on the unitary group

Weixiao Lu

MIT

7th Nisyros Conference, July 14, 2025

Table of content

1 Jacquet-Rallis relative trace formula

2 RTF approach to the STF on the unitary group

3 Applications

Table of content

1 Jacquet-Rallis relative trace formula

2 RTF approach to the STF on the unitary group

3 Applications

- E/F quadratic extension of number fields, $\eta: \mathbb{A}_F^{\times} \to \{\pm 1\}$ quadratic character.
- $G = \operatorname{Res}_{E/F}(\operatorname{GL}_n \times \operatorname{GL}_{n+1}).$

- E/F quadratic extension of number fields, $\eta: \mathbb{A}_F^{\times} \to \{\pm 1\}$ quadratic character.
- $G = \operatorname{Res}_{E/F}(\operatorname{\mathsf{GL}}_n \times \operatorname{\mathsf{GL}}_{n+1}).$
- Subgroups of G:

$$H_1 = \{(x, \begin{pmatrix} x \\ 1 \end{pmatrix}) \mid x \in GL_{n,E}\}, \quad H_2 = GL_{n,F} \times GL_{n+1,F}.$$

• $f \in \mathcal{S}(G(\mathbb{A}_F))$ a test function, $K_f(x,y) = \sum_{\gamma \in G(F)} f(x^{-1}\gamma y)$ automorphic kernel function.

- E/F quadratic extension of number fields, $\eta: \mathbb{A}_F^{\times} \to \{\pm 1\}$ quadratic character.
- $G = \operatorname{Res}_{E/F}(\operatorname{\mathsf{GL}}_n \times \operatorname{\mathsf{GL}}_{n+1}).$
- Subgroups of G:

$$H_1 = \{(x, \begin{pmatrix} x \\ 1 \end{pmatrix}) \mid x \in \mathsf{GL}_{n,E}\}, \quad H_2 = \mathsf{GL}_{n,F} \times \mathsf{GL}_{n+1,F}.$$

• $f \in \mathcal{S}(G(\mathbb{A}_F))$ a test function, $K_f(x,y) = \sum_{\gamma \in G(F)} f(x^{-1}\gamma y)$ automorphic kernel function.

Jacquet-Rallis RTF:

$$I(f) := \int_{[H_1]} \int_{[H_2]} K_f(x,y) \eta(y) dx dy.$$

$$I(f) := \int_{[H_1]} \int_{[H_2]} K_f(x, y) \eta(y) dx dy.$$

Jacquet-Rallis RTF $\stackrel{+\mathsf{more}}{=\!=\!=\!=}$ the global GGP conjecture for $U_n \times U_{n+2m+1}$.

$$I(f) := \int_{[H_1]} \int_{[H_2]} K_f(x,y) \eta(y) dx dy.$$

Jacquet-Rallis RTF $\stackrel{+\text{more}}{\Longrightarrow}$ the global GGP conjecture for $U_n \times U_{n+2m+1}$. Studies on Jacquet-Rallis RTF:

- Smooth Transfer: Zhang, Xue.
- Fundamental lemma: Yun-Gordan, Beuzart-Plessis, Zhang.
- Regularization: Zydor.
- Singular terms: Chaudoaurd–Zydor,
 Beuzart-Plessis–Chaudouard–Zydor, Beuzart-Plessis–Chaudouard.

RTF on the Lie algebra

$$f \in \mathcal{S}(\mathfrak{gl}_{n+1}(\mathbb{A}_F)), h \in [\mathsf{GL}_n]$$

$$K_f(h) = \sum_{X \in \mathfrak{gl}_{n+1}(F)} f(h^{-1}Xh).$$

Lie algebra analog:

$$I(f) := \int_{[\mathsf{GL}_n]} \mathsf{K}_f(h) \eta(h) dh.$$

The geometric side can be reduced to Lie algebra.

RTF on the Lie algebra

$$f \in \mathcal{S}(\mathfrak{gl}_{n+1}(\mathbb{A}_F)), h \in [\mathsf{GL}_n]$$

$$K_f(h) = \sum_{X \in \mathfrak{gl}_{n+1}(F)} f(h^{-1}Xh).$$

Lie algebra analog:

$$I(f) := \int_{[\mathsf{GL}_n]} \mathsf{K}_f(h) \eta(h) dh.$$

The geometric side can be reduced to Lie algebra.

$$\mathcal{A} := \mathfrak{gl}_{n+1} / \operatorname{GL}_n$$
 the GIT quotient, $a \in \mathcal{A}(F)$.

$$K_{f,a}(h) := \sum_{X \mapsto a} f(h^{-1}Xh), \quad I_a(f) := \int_{[\mathsf{GL}_n]} K_{f,a}(h) \eta(h) dh.$$

Geometric expansion:

$$I(f) = \sum_{a \in \mathcal{A}(F)} I_a(f)$$

 $\mathcal{F}:=\{\text{semistandard psgps of }\mathsf{GL}_{n+1}\text{ s.t. }P\cap\mathsf{GL}_n\text{ is standard}\}.$

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

$$P = MN$$
, $P_n := P \cap GL_n$, $\mathfrak{p} = \mathfrak{m}_P \oplus \mathfrak{n}_P$.

$$K_{f,P,a}(h) = \sum_{M \in \mathfrak{m}_P(F)} \int_{\mathfrak{n}_P(\mathbb{A})} f(h^{-1}(M+N)h) dh.$$

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

P = MN, $P_n := P \cap GL_n$, $\mathfrak{p} = \mathfrak{m}_P \oplus \mathfrak{n}_P$.

$$K_{f,P,a}(h) = \sum_{M \in \mathfrak{m}_P(F)} \int_{\mathfrak{n}_P(\mathbb{A})} f(h^{-1}(M+N)h) dh.$$

T truncation parameter,

$$K_a^T(f) := \sum_{P \in \mathcal{F}} \varepsilon_P \sum_{\gamma \in P_n(F) \setminus GL_n(F)} \widehat{\tau}_P (H_P(\gamma h) - T_P) K_{f,P,a}(\gamma h).$$

$$I_a^T(f) := \int_{[GL^1]} K_a^T(h) \eta(h) dh.$$

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

P = MN, $P_n := P \cap GL_n$, $\mathfrak{p} = \mathfrak{m}_P \oplus \mathfrak{n}_P$.

$$K_{f,P,a}(h) = \sum_{M \in \mathfrak{m}_{P}(F)} \int_{\mathfrak{n}_{P}(\mathbb{A})} f(h^{-1}(M+N)h) dh.$$

T truncation parameter,

$${\it K}_{\it a}^{\it T}(f):=\sum_{P\in {\it F}}\sum_{\gamma\in P_n(F)\backslash\, {\rm GL}_n(F)}\widehat{\tau}_P\big({\it H}_P(\gamma h)-{\it T}_P\big){\it K}_{f,P,a}(\gamma h).$$

$$I_a^T(f) := \int_{[GL^1]} K_a^T(h) \eta(h) dh.$$

Zydor: absolutely convergent, exponential polynomial in T, pure polynomial term is a constant $=: I_a(f)$.

Geometric terms

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- X is (relatively) regular semisimple, if it is regular and the orbit of X is closed.
- $a \in \mathcal{A}(F)$ is regular semisimple if it is the image of a regular semisimple element. In this case, choose any $X \mapsto a$

$$I_a(f) = \operatorname{Orb}(X, f) = \int_{\mathsf{GL}_n(\mathbb{A})} f(h^{-1}Xh)\eta(h)dh.$$

Geometric terms

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- X is (relatively) regular semisimple, if it is regular and the orbit of X is closed.
- $a \in \mathcal{A}(F)$ is regular semisimple if it is the image of a regular semisimple element. In this case, choose any $X \mapsto a$

$$I_a(f) = \operatorname{Orb}(X, f) = \int_{\mathsf{GL}_n(\mathbb{A})} f(h^{-1}Xh)\eta(h)dh.$$

• Q: Can we describe $I_a(f)$ for general a? Chaudouard–Zydor: global semisimple descent, reduce to study $I_a(f)$ for nilpotent a.

Geometric terms

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- X is (relatively) regular semisimple, if it is regular and the orbit of X is closed.
- $a \in \mathcal{A}(F)$ is regular semisimple if it is the image of a regular semisimple element. In this case, choose any $X \mapsto a$

$$I_a(f) = \operatorname{Orb}(X, f) = \int_{\mathsf{GL}_n(\mathbb{A})} f(h^{-1}Xh)\eta(h)dh.$$

- Q: Can we describe $I_a(f)$ for general a? Chaudouard–Zydor: global semisimple descent, reduce to study $I_a(f)$ for nilpotent a.
- Today: study the "regular part" of $I_a(f)$ for any $a \in \mathcal{A}(F)$.

Regular orbit

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- $a \in \mathcal{A}(F)$, $\mathfrak{gl}_{n+1,a} := \text{the fiber of } a$.
- There are finitely many regular orbits in $\mathfrak{gl}_{n+1,a}$.

Regular orbit

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- $a \in \mathcal{A}(F)$, $\mathfrak{gl}_{n+1,a} :=$ the fiber of a.
- There are finitely many regular orbits in $\mathfrak{gl}_{n+1,a}$.
- One special regular orbit: X is called +-regular if $e_{n+1}, Xe_{n+1}, \cdots, X^ne_{n+1}$ are linearly independent.
- Any a, there is a unique +-regular orbit in $\mathfrak{gl}_{n+1,a}$

Regular orbit

- $X \in \mathfrak{gl}_{n+1}(F)$ is (relatively) regular if its stabilizer if trivial.
- $a \in \mathcal{A}(F)$, $\mathfrak{gl}_{n+1,a} :=$ the fiber of a.
- There are finitely many regular orbits in $\mathfrak{gl}_{n+1,a}$.
- One special regular orbit: X is called +-regular if $e_{n+1}, Xe_{n+1}, \cdots, X^ne_{n+1}$ are linearly independent.
- Any a, there is a unique +-regular orbit in $\mathfrak{gl}_{n+1,a}$

Example

- *a* r.s.s, +-regular orbit = the unique orbit above *a*.
- a = 0, X = the principal Jordan block (1 above the diagonal)

Regular contribution

Theorem (L. 24)

If f is supported in +-regular open subset. For $a \in \mathcal{A}(F)$, choose $X \mapsto a$, then the integral

$$\operatorname{Orb}(X,f,s)=\int_{\mathsf{GL}_n(\mathbb{A})}f(h^{-1}Xh)\eta(h)|\mathrm{det}\, h|^sdh$$

is convergent when $\operatorname{Re}(s) \ll 0$, and has analytic continuation to s=0.

Moreover

$$I_a(f) = \operatorname{Orb}(X, f, 0).$$

Regular contribution

Theorem (L. 24)

Moreover

If f is supported in +-regular open subset. For $a \in \mathcal{A}(F)$, choose $X \mapsto a$, then the integral

$$\operatorname{Orb}(X,f,s)=\int_{\mathsf{GL}_n(\mathbb{A})}f(h^{-1}Xh)\eta(h)|\mathrm{det}\, h|^sdh$$

is convergent when $\operatorname{Re}(s) \ll 0$, and has analytic continuation to s=0.

$$I_a(f) = \operatorname{Orb}(X, f, 0).$$

We have a more general theorem for f supported in the regular subset.

$$I_a(f) = \sum_i \mathrm{Orb}(X_i, f, 0),$$

the sum runs through regular orbits above a.

Sketch of the proof

Zydor:

$$I_a(f,s) := \int_{[\mathsf{GL}_n]}^{\mathrm{reg}} \mathsf{K}_{f,a}(x) \eta(x) |x|^s dx,$$

defined as constant term of the exponential polynomial

$$I_a^T(f,s) := \int_{[\mathsf{GL}_n]} K_{f,a}^T(x) \eta(x) |x|^s dx.$$

Show that under the assumption

$$\lim_{T\to\infty} I_a^T(f,s) = I(f,s) = \mathrm{Orb}(X,f,s)$$

when $Re(s) \ll 0$, by computing explicitly the exponents.

Local theory

The global Orb(X, f, s) is Eulerian, leading to the study of local integrals.

- \bullet $\it E/F$ quadratic ext'n of local fields, $\eta: \it F^{\times} \rightarrow \{\pm 1\}$ quadratic char.
- $f \in \mathcal{S}(\mathfrak{gl}_{n+1}(F))$.
- X be a +-regular element $\mapsto a \in \mathcal{A}(F)$.

Local theory

The global Orb(X, f, s) is Eulerian, leading to the study of local integrals.

- E/F quadratic ext'n of local fields, $\eta:F^{\times} \to \{\pm 1\}$ quadratic char.
- $f \in \mathcal{S}(\mathfrak{gl}_{n+1}(F))$.
- X be a +-regular element $\mapsto a \in \mathcal{A}(F)$.

We consider

$$\operatorname{Orb}(X,f,s) := \int_{\operatorname{\mathsf{GL}}_n(F)} f(h^{-1}Xh) \eta(h) |\det h|^s dh.$$

Fact:

- $\operatorname{Orb}(X, f, s)$ is convergent for $\operatorname{Re}(s) < 1 \frac{1}{n}$, and has meromorphic continuation to \mathbb{C} .
- ullet Poles are controlled by an abelian L-function: $\exists L_a(s) = \text{g.c.d}$

$$\operatorname{Orb}^{
atural}(X,f,s) := \operatorname{Orb}(X,f,s)/L_a(s)$$
 is entire.

Local transfer

Example

- $a \text{ r.s.s}, L_a(s) = 1.$
- a = 0, $L_a(s) = L(-s, \eta)L(-2s 1, \eta^2) \cdots L(-ns n + 1, \eta^n)$.

Local transfer

Example

- $a \text{ r.s.s}, L_a(s) = 1.$
- a = 0, $L_a(s) = L(-s, \eta)L(-2s 1, \eta^2) \cdots L(-ns n + 1, \eta^n)$.

Orbital integral can be compared to orbital integral on the unitary group.

- \mathcal{H} isom. class of *n*-dim Hermitian spaces.
- $V \in \mathcal{H}, \mathfrak{u}^V := \{X \in \operatorname{End}_E(V) \mid X \text{ self-adjoint}\}, \ U(V) \text{ acts on } \mathfrak{u}^V \text{ by conjugation.}$
- $V \in \mathcal{H}, \ V' := V \oplus E$. Consider U(V) action on $\mathfrak{u}^{V'}$.
- The GIT quotient $\mathfrak{u}^{V'}/U(V)$ can be identified with A.
- We have similar notion of regular and regular semisimple element.

Local transfer contd.

Fact: for any $a \in \mathcal{A}(F)$ r.s.s., there exists a unique $V \in \mathcal{H}$ such that $\mathfrak{u}_a^{V'}(F)$ (the fiber of a) $\neq \emptyset$.

Local transfer contd.

Fact: for any $a \in \mathcal{A}(F)$ r.s.s., there exists a unique $V \in \mathcal{H}$ such that $\mathfrak{u}_a^{V'}(F)$ (the fiber of a) $\neq \emptyset$.

 $f \in \mathcal{S}(\mathfrak{gl}_{n+1}(F))$ and $f^V \in \mathcal{S}(\mathfrak{u}^{V'})(F)$. f and f^V are transfer if for any $a \in \mathcal{A}(F)$ r.s.s., we have

$$Orb(X, f)\omega(X) = Orb(X^V, f^V),$$

where

- $V \in \mathcal{H}$ such that $\mathfrak{u}_a^{V'}(F) \neq \varnothing$.
- $\omega(X)$ is the transfer factor (s.t. Orb only depends on a but not X).
- $X^V \mapsto a$ and $Orb(X^V, f^V) = \int_{U(V)(F)} f^V(h^{-1}X^V h) dh$.

Local singular transfer

Our local theorem states that when f and $(f^V)_{V\in\mathcal{H}}$ matches, then for any $a\in\mathcal{A}(F)$, the regular orbital integral also matches with the semisimple orbital integral.

Theorem (L. 24)

For matching f and $(f^V)_{V \in \mathcal{H}}$, we have

$$\operatorname{Orb}^{\natural}(X,f,0)\omega(X) = \sum_{(Y,V)} c_{Y} \operatorname{Orb}(Y,f^{V}),$$

where the sum runs through (Y, V), s.t. Y is a semisimple orbits in $\mathfrak{u}_a^{V'}$.

regular orbital integral on $GL_n = (stable)$ semisimple orbital integral on U_n .

Sketch of the proof

- Zhang: Relative semisimple descent:
 regular orb. = r.s.s orb. × reg. unipotent orb.
- Reduce the the r.s.s and the unipotent case.
- r.s.s. case follows from the definition.
- Beuzart-Plessis: regular unipotent case using Fourier transform commutes with transfer (due to Zhang, Xue).

Table of content

Jacquet-Rallis relative trace formula

2 RTF approach to the STF on the unitary group

3 Applications

Local singular transfer:

$$\operatorname{Orb}^{\natural}(X,f,0)\omega(X) = \sum_{(Y,V)} c_{Y} \operatorname{Orb}(Y,f^{V}),$$

Local singular transfer:

$$\operatorname{Orb}^{\natural}(X,f,0)\omega(X) = \sum_{(Y,V)} c_{Y} \operatorname{Orb}(Y,f^{V}),$$

Specialize to $X \in \mathfrak{gl}_{n+1}(F)$ of the form

$$X = \begin{pmatrix} A & v \\ 0 & 0 \end{pmatrix}$$

On the RHS, semisimple $Y \mapsto a$ lies in $\mathfrak{u}^V(F) \subset \mathfrak{u}^{V'}(F)$.

Local singular transfer:

$$\operatorname{Orb}^{\natural}(X,f,0)\omega(X) = \sum_{(Y,V)} c_{Y} \operatorname{Orb}(Y,f^{V}),$$

Specialize to $X \in \mathfrak{gl}_{n+1}(F)$ of the form

$$X = \begin{pmatrix} A & v \\ 0 & 0 \end{pmatrix}$$

On the RHS, semisimple $Y \mapsto a$ lies in $\mathfrak{u}^V(F) \subset \mathfrak{u}^{V'}(F)$.

RHS = usual stable orbital integral! (c_Y = Kottwitz sign of stabilizer)

Local singular transfer:

$$\operatorname{Orb}^{\natural}(X,f,0)\omega(X) = \sum_{(Y,V)} c_{Y} \operatorname{Orb}(Y,f^{V}),$$

Specialize to $X \in \mathfrak{gl}_{n+1}(F)$ of the form

$$X = \begin{pmatrix} A & v \\ 0 & 0 \end{pmatrix}$$

On the RHS, semisimple $Y \mapsto a$ lies in $\mathfrak{u}^V(F) \subset \mathfrak{u}^{V'}(F)$.

 $\mathsf{RHS} = \mathsf{usual} \ \mathsf{stable} \ \mathsf{orbital} \ \mathsf{integral!} \ (c_Y = \mathsf{Kottwitz} \ \mathsf{sign} \ \mathsf{of} \ \mathsf{stabilizer})$

Regular orbital integral on $\mathfrak{gl}_n \times F^n \leftrightarrow \text{Stable orbital integral on } \mathfrak{u}^V$.

Globalization

Design an RTF that realizes the above local comparison.

Globalization

Design an RTF that realizes the above local comparison.

- ullet E/F quad. ext'n of number fields, $\eta: \mathbb{A}_F^{\times} \to \{\pm 1\}$ quad. character.
- $G = \operatorname{Res}_{E/F} \operatorname{GL}_{n,E}, H = \operatorname{GL}_{n,F}.$
- $f \in \mathcal{S}(\mathsf{GL}_n(\mathbb{A}_E)), \Phi \in \mathcal{S}(\mathbb{A}^n).$

Globalization

Design an RTF that realizes the above local comparison.

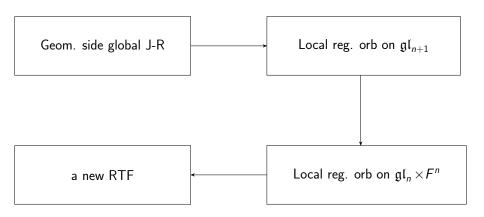
- E/F quad. ext'n of number fields, $\eta: \mathbb{A}_F^{\times} \to \{\pm 1\}$ quad. character.
- $G = \operatorname{Res}_{E/F} \operatorname{GL}_{n,E}, H = \operatorname{GL}_{n,F}.$
- $f \in \mathcal{S}(\mathsf{GL}_n(\mathbb{A}_E)), \Phi \in \mathcal{S}(\mathbb{A}^n).$

Consider

$$I(f \otimes \Phi, \mathbf{s}) = \int_{[\mathsf{GL}_n]} \int_{[\mathsf{GL}_n]} \mathsf{K}_f(x, y) \Theta(x, \Phi) \eta(x)^n \eta(y)^{n+1} |x|^{\mathbf{s}} dx dy.$$

where
$$\Theta(x, \Phi) = \sum_{v \in F^n} \Phi(xv)$$
.

Summary



$$I(f \otimes \Phi, s) = \int_{[H]} \int_{[H]} K_f(x, y) \Theta(x, \Phi) \eta(x)^n \eta(y)^{n+1} |x|^s dx dy.$$

$$I(f \otimes \Phi, \mathbf{s}) = \int_{[H]} \int_{[H]} K_f(x, y) \Theta(x, \Phi) \eta(x)^n \eta(y)^{n+1} |x|^{\mathbf{s}} dx dy.$$

Geometrically, $GL_{n,E} \times F^n / GL_n \times GL_n$, the action is given by

$$(g, v) \cdot (x, y) = (x^{-1}gy, x^{-1}v)$$

$$I(f \otimes \Phi, \mathbf{s}) = \int_{[H]} \int_{[H]} K_f(x, y) \Theta(x, \Phi) \eta(x)^n \eta(y)^{n+1} |x|^{\mathbf{s}} dx dy.$$

Geometrically, $GL_{n,E} \times F^n / GL_n \times GL_n$, the action is given by

$$(g, v) \cdot (x, y) = (x^{-1}gy, x^{-1}v)$$

Facts:

- Infinitesimally looks like $(\mathfrak{gl}_n \times F^n)/\operatorname{GL}_n$,
- ∃ canonical identification

$$\operatorname{\mathsf{GL}}_{n,\mathsf{E}} \times \mathsf{F}^n / \operatorname{\mathsf{GL}}_n \times \operatorname{\mathsf{GL}}_n \cong U(V) /_{\operatorname{conj}} U(V)$$

$$I(f \otimes \Phi, \mathbf{s}) = \int_{[H]} \int_{[H]} K_f(x, y) \Theta(x, \Phi) \eta(x)^n \eta(y)^{n+1} |x|^{\mathbf{s}} dx dy.$$

Geometrically, $GL_{n,E} \times F^n / GL_n \times GL_n$, the action is given by

$$(g, v) \cdot (x, y) = (x^{-1}gy, x^{-1}v)$$

Facts:

- Infinitesimally looks like $(\mathfrak{gl}_n \times F^n)/\operatorname{GL}_n$,
- ∃ canonical identification

$$\operatorname{\mathsf{GL}}_{n,\mathsf{E}} \times F^n / \operatorname{\mathsf{GL}}_n \times \operatorname{\mathsf{GL}}_n \cong U(V) /_{\operatorname{conj}} U(V)$$

Upshot: it can be compared to the STF on the unitary group!

Regularization

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

Regularization

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$ $P \in \mathcal{F} \to \mathsf{a} \text{ partial } \Theta \text{-series } P\Theta(x, \Phi).$

$$K_{f\otimes\Phi}^{T}(x,y) = \sum_{P\in\mathcal{F}} \sum_{\gamma,\delta\in P_n(F)\backslash GL_n(F)} \widehat{\tau}_P(H_P(\gamma x) - T_P) K_{P_n}(\gamma x,\delta y)_P \Theta(\gamma x,\Phi)$$

Regularization

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

 $P \in \mathcal{F} \to \text{a partial } \Theta\text{-series }_P\Theta(x,\Phi).$

$$K_{f\otimes\Phi}^{T}(x,y) = \sum_{P\in\mathcal{F}} \sum_{\gamma,\delta\in P_n(F)\backslash \operatorname{GL}_n(F)} \widehat{\tau}_P(H_P(\gamma x) - T_P) K_{P_n}(\gamma x,\delta y)_P \Theta(\gamma x,\Phi)$$

$$I^{T}(f \otimes \Phi, s) := \int_{[\mathsf{GL}_n]} \int_{[\mathsf{GL}_n]} K_{f \otimes \Phi}^{T}(x, y) \eta(x)^n \eta(y)^{n+1} |\det y|^s dx dy.$$

Theorem (Chen-L.-Zhang)

Absolutely convergent, exponential polynomial in T, pure polynomial term is constant (:= $I(f \otimes \Phi, s)$) whenever $s \neq 0, 1$, meromorphic in s.

 $\mathcal{F}:=\{\text{semistandard psgps of }\mathsf{GL}_{n+1}\text{ s.t. }P\cap\mathsf{GL}_n\text{ is standard}\}.$

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

 $V_{M_P}:=$ the last row of $\mathfrak{m}_P,\ V_{N_P}:=$ the last row of $\mathfrak{n}_P.$

$$_{P}\Theta(x,\Phi):=\sum_{M\in V_{M_{P}}(F)}\int_{V_{N_{P}}(\mathbb{A})}\Phi(x(M+N))dN.$$

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

 $V_{M_P}:=$ the last row of $\mathfrak{m}_P,\ V_{N_P}:=$ the last row of $\mathfrak{n}_P.$

$$_{P}\Theta(x,\Phi):=\sum_{M\in V_{M_{P}}(F)}\int_{V_{N_{P}}(\mathbb{A})}\Phi(x(M+N))dN.$$

Example

- $P = GL_{n+1}$, the usual Θ function.
- P lower triangular, Levi $GL_n \times GL_1$, $P\Theta(x, \Phi) = \Phi(0)$.
- P upper triangular, Levi $GL_n \times GL_1$, $P\Theta(x, \Phi) = |x|^{-1}\widehat{\Phi}(0)$.

 $\mathcal{F} := \{ \text{semistandard psgps of } \mathsf{GL}_{n+1} \text{ s.t. } P \cap \mathsf{GL}_n \text{ is standard} \}.$

 $V_{M_P}:=$ the last row of $\mathfrak{m}_P,\ V_{N_P}:=$ the last row of $\mathfrak{n}_P.$

$$_{P}\Theta(x,\Phi):=\sum_{M\in V_{M_{P}}(F)}\int_{V_{N_{P}}(\mathbb{A})}\Phi(x(M+N))dN.$$

Example

- $P = GL_{n+1}$, the usual Θ function.
- P lower triangular, Levi $GL_n \times GL_1$, $P\Theta(x, \Phi) = \Phi(0)$.
- P upper triangular, Levi $GL_n \times GL_1$, $P\Theta(x, \Phi) = |x|^{-1}\widehat{\Phi}(0)$.

Partial Θ -function also appears in a joint work with Boisseau and Xue on the GGP conjecture for Fourier-Jacobi periods.

Test functions

$$f \otimes \Phi = \bigotimes_{\nu} (f_{\nu} \otimes \Phi_{\nu}) \in \mathcal{S}(\mathsf{GL}_{n}(\mathbb{A}_{E}) \times \mathbb{A}_{E}^{n})$$
 is a nice test function, if

- ∃ a non-Arch v₁ s.t. f_{v1} is truncated matrix coefficient of supercuspidal representation.
- \exists a non-Arch $v_2 \neq v_1$ split in E s.t supp $(f_{v_2}) \subset$ the elliptic locus.

Test functions

$$f \otimes \Phi = \bigotimes_{\nu} (f_{\nu} \otimes \Phi_{\nu}) \in \mathcal{S}(\mathsf{GL}_{n}(\mathbb{A}_{E}) \times \mathbb{A}_{E}^{n})$$
 is a nice test function, if

- \exists a non-Arch v_1 s.t. f_{v_1} is truncated matrix coefficient of supercuspidal representation.
- \exists a non-Arch $v_2 \neq v_1$ split in E s.t supp $(f_{v_2}) \subset$ the elliptic locus.

Let V_0 be the split Hermitian space, $U := U(V_0)$.

We say that $f = \otimes f_{\nu} \in \mathcal{S}(U(\mathbb{A}))$ is a nice test function, if

- \exists a non-Arch v_1 s.t. f_{v_1} is truncated matrix coefficient of supercuspidal representation.
- \exists a non-Arch $v_2 \neq v_1$ split in E s.t supp $(f_{v_2}) \subset$ the elliptic locus.

Comparison

Theorem (L. 2025)

Let $f \otimes \Phi$ and f^{V_0} be matching nice test functions. Then

- The distribution $I(f \otimes \Phi, s)$ is holomorphic at s = 0.
- We have $2I(f \otimes \Phi, 0) = S(f^{V_0})$.

Comparison

Theorem (L. 2025)

Let $f \otimes \Phi$ and f^{V_0} be matching nice test functions. Then

- The distribution $I(f \otimes \Phi, s)$ is holomorphic at s = 0.
- We have $2I(f \otimes \Phi, 0) = S(f^{V_0})$.

Some remarks:

• The distribution $I(f \otimes \Phi, s)$ on $\mathcal{S}(\mathsf{GL}_n(\mathbb{A}_E) \times \mathbb{A}_F^n)$ is stable in the sense that

$$s \neq 0, 1, g \in \mathsf{GL}_n(\mathbb{A}_F) \implies I(R(g)(f \otimes \Phi), s) = \eta(g)|g|^s I(f \otimes \Phi, s).$$

- However, it has pole at s = 0.
- One expects there is some way to stabilize the GL_n and compare full trace formulas.

Table of content

Jacquet-Rallis relative trace formula

2 RTF approach to the STF on the unitary group

3 Applications

Diagonal cycle

Trace formula on $U \Longrightarrow$ relative trace formula for $U \setminus U \times U/U \leftrightarrow$ diagonal period.

Diagonal cycle

Trace formula on $U \Longrightarrow$ relative trace formula for $U \setminus U \times U/U \leftrightarrow$ diagonal period. Arithmetic version:

- E/F CM ext'n of number field.
- V n-dim'l Herm space, signature $(n-1,1),(n,0),\cdots,(n,0)$.
- $X := \operatorname{Sh}_H$, \mathfrak{X} integral model over \mathcal{O}_F , abs. dim = n.
- $\mathfrak{X} \hookrightarrow \mathfrak{X} \times_{\mathcal{O}_F} \mathfrak{X}$ arithmetic diagonal cycle, $\Delta \in \widehat{\mathit{CH}}^{n-1}(\mathfrak{X} \times \mathfrak{X})$.

Diagonal cycle

Trace formula on $U \Longrightarrow$ relative trace formula for $U \setminus U \times U/U \leftrightarrow$ diagonal period. Arithmetic version:

- E/F CM ext'n of number field.
- V n-dim'l Herm space, signature $(n-1,1),(n,0),\cdots,(n,0)$.
- $X := \operatorname{Sh}_H$, \mathfrak{X} integral model over \mathcal{O}_F , abs. dim = n.
- $\mathfrak{X} \hookrightarrow \mathfrak{X} \times_{\mathcal{O}_F} \mathfrak{X}$ arithmetic diagonal cycle, $\Delta \in \widehat{\mathit{CH}}^{n-1}(\mathfrak{X} \times \mathfrak{X})$.

Conjecture(Chen-L.-Zhang): π tempered cohomological,

$$\langle \Delta_{\pi}, \Delta_{\pi}, \widehat{\omega} \rangle \sim L'(1, \pi, \mathrm{Ad}),$$

 $\langle\cdot,\cdot\rangle$ denotes the Arakelov intersection pairing, $\widehat{\omega}$ is the (metrized) Hodge bundle.

Lapid-Mao conjecture: for $arphi\in\pi$ with $\mathit{W}_{arphi}(1)=1$, then

$$\langle \varphi, \varphi \rangle \sim L(1, \pi, Ad).$$

Lapid-Mao conjecture: for $\varphi \in \pi$ with $W_{\varphi}(1) = 1$, then

$$\langle \varphi, \varphi \rangle \sim L(1, \pi, Ad).$$

(n odd, Beuzart-Plessis-Chaudouard, n even, Boisseau-L.-Xue.)

Lapid-Mao conjecture: for $\varphi \in \pi$ with $W_{\varphi}(1) = 1$, then

$$\langle \varphi, \varphi \rangle \sim L(1, \pi, \mathrm{Ad}).$$

(n odd, Beuzart-Plessis-Chaudouard, n even, Boisseau-L.-Xue.) Our conjecture

$$\langle \Delta_{\pi}, \Delta_{\pi}, \widehat{\omega} \rangle \sim L'(1, \pi, \mathrm{Ad}),$$

can be regarded as an arithmetic analog.

Theorem (Chen-L.-Zhang)

The conjecture holds when n = 2.

Lapid-Mao conjecture: for $\varphi \in \pi$ with $W_{\varphi}(1) = 1$, then

$$\langle \varphi, \varphi \rangle \sim L(1, \pi, \mathrm{Ad}).$$

(n odd, Beuzart-Plessis-Chaudouard, n even, Boisseau-L.-Xue.)

Our conjecture

$$\langle \Delta_{\pi}, \Delta_{\pi}, \widehat{\omega} \rangle \sim L'(1, \pi, \mathrm{Ad}),$$

can be regarded as an arithmetic analog.

Theorem (Chen-L.-Zhang)

The conjecture holds when n = 2.

- n = 1: Faltings height of CM abelian variety (average Colmez conj.)
- Relative Langlands duality(Ben-Zvi-Sakellaridis-Venkatesh) provides a general framework for periods (automorphic/geometric/arithmetic).

Proof

Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture for Bessel case (Disegni–Zhang).

Proof

Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture for Bessel case (Disegni–Zhang).

In our setting, consider the arithmetic distribution $\mathbb{J}(f)=\langle R(f)\Delta,\Delta,\widehat{\omega}
angle$

Main proposition: when f and $(f' \otimes \Phi)$ are transfer, then

$$\mathbb{J}(f) = \frac{d}{ds}I(f'\otimes\Phi,0)$$

Proof

Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture for Bessel case (Disegni–Zhang).

In our setting, consider the arithmetic distribution $\mathbb{J}(f) = \langle R(f)\Delta, \Delta, \widehat{\omega} \rangle$ Main proposition: when f and $(f' \otimes \Phi)$ are transfer, then

$$\mathbb{J}(f) = \frac{d}{ds}I(f'\otimes\Phi,0)$$

- \bullet π -part of LHS: the intersection pairing we're interested in.
- π -part of RHS: $L'(0, \pi, \mathrm{Ad})$

Stable character

- E/F local, ϕ a tempered L-parameter of U.
- For each V, given $f^V \in \mathcal{S}(U(V)(F))$.

Stable character

- E/F local, ϕ a tempered L-parameter of U.
- For each V, given $f^V \in \mathcal{S}(U(V)(F))$.

$$S_{\phi}((f^{V})) = \sum_{V \in \mathcal{H}} \sum_{\pi \in \Pi_{\phi}(U(V))} \Theta_{\pi}(f^{V}).$$

Stable character in a Vogan parket.

Stable character

- E/F local, ϕ a tempered L-parameter of U.
- For each V, given $f^V \in \mathcal{S}(U(V)(F))$.

$$S_{\phi}((f^V)) = \sum_{V \in \mathcal{H}} \sum_{\pi \in \Pi_{\phi}(U(V))} \Theta_{\pi}(f^V).$$

Stable character in a Vogan parket.

For $f_v \in \mathcal{S}(\mathsf{GL}_n(E))$ and $\Phi \in \mathcal{S}(F^n)$, we put

$$I_{\Pi_{\nu}}(f_{\nu}\otimes\Phi_{\nu},s)=\sum_{W\in\mathcal{B}_{\Pi_{\nu}}}Z_{n}(R(f_{\nu})W,\Phi_{\nu},s)\beta(\overline{W}),$$

and a normalized version

$$I_{\Pi_{m{
u}}}^{
atural}(f_{m{
u}}\otimes\Phi_{m{
u}},s)=\sum_{m{W}\in\mathcal{B}_{\Pi_{m{
u}}}}Z_{m{n}}^{
atural}(R(f_{m{
u}})m{W},\Phi_{m{
u}},s)eta^{
atural}(\overline{m{W}}),$$

Z local Flicker-Rallis zeta integral, β local Flicker-Rallis period.

Spectral comparison

Theorem (L. 25)

There exists $C(\phi) \in \mathbb{C}$ such that

$$S_{\phi}((f^{V})) = C(\phi)I_{\Pi}^{\natural}(f \otimes \Phi, 0).$$

holds for all matching of function (f^V) and $f \otimes \Phi$.

Spectral comparison

Theorem (L. 25)

There exists $C(\phi) \in \mathbb{C}$ such that

$$S_{\phi}((f^{V})) = C(\phi)I_{\Pi}^{\natural}(f \otimes \Phi, 0).$$

holds for all matching of function (f^V) and $f \otimes \Phi$.

Proof: globalization and using the global comparison

72

Thank you for your attention!!