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Jacquet-Rallis relative trace formula

e E/F quadratic extension of number fields,  : Af — {£1} quadratic

character.

e G = RGSE/F(GL,, X GLn+1).



Jacquet-Rallis relative trace formula

e E/F quadratic extension of number fields,  : Af — {£1} quadratic
character.

o G = ResE/,:(GL,, X GLpy1).

@ Subgroups of G:

H = {(x, (X 1)) |x € GLng}, Ha = Glnr x GLysyr.

o f € S(G(AF)) a test function, Kr(x,y) = > . c6(F) f(x Lyy)

automorphic kernel function.



Jacquet-Rallis relative trace formula

e E/F quadratic extension of number fields,  : Af — {£1} quadratic

character.
e G = RGSE/F(GL,, X GLn+1).
@ Subgroups of G:

H = {(x, (X 1)) |x € GLng}, Ha = Glnr x GLysyr.

o f € S(G(AF)) a test function, Kr(x,y) = > . c6(F) f(x Lyy)
automorphic kernel function.

Jacquet-Rallis RTF:

I(F) = /[Hﬂ /[Hﬂ Ke(x, y)n(y )dxdy.
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Jacquet-Rallis relative trace formula

I(F) = /[Hﬂ /w Ke(x, y)n(y)dxdy.

“+more

Jacquet-Rallis RTF == the global GGP conjecture for U, X Unt2m+1-



Jacquet-Rallis relative trace formula

I(F) = /[Hﬂ /w Ke(x, y)n(y)dxdy.

“+more

Jacquet-Rallis RTF == the global GGP conjecture for U, X Unt2m+1-
Studies on Jacquet-Rallis RTF:

@ Smooth Transfer: Zhang, Xue.
@ Fundamental lemma: Yun—Gordan, Beuzart-Plessis, Zhang.
@ Regularization: Zydor.

@ Singular terms: Chaudoaurd—Zydor,

Beuzart-Plessis—Chaudouard—Zydor, Beuzart-Plessis—Chaudouard.



RTF on the Lie algebra

f € S(alys1(AF)), b€ [GLo]

Ke(h)= > f(h'Xn).
Xegl,1(F)

Lie algebra analog:
I(f) ::/ Kr(h)n(h)dh.
[GLs]

The geometric side can be reduced to Lie algebra.



RTF on the Lie algebra

f € S(glpa(AF)), h € [GL,]
Ke(h)= > f(h'Xn).
Xegl,1(F)
Lie algebra analog:

I(f) ::/ Kr(h)n(h)dh
[GLs]
The geometric side can be reduced to Lie algebra.
A =gl 1 /GL, the GIT quotient, a € A(F).
Kra(h) =Y F(h1Xh), I(f):= / Kr.o(h)n(h)dh.
[GLx]

X—a

Geometric expansion:
> h(f)
acA(F)
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Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.

11



Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
P=MN, P,:=PNGL, p=mp®np.

Kr.pa(h Z f(h (M + N)h)dh.
Memp(F) “ P
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Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
P=MN, P,:=PNGL, p=mp®np.

Kr.pa(h Z f(h (M + N)h)dh.
Memp(F) “ P

T truncation parameter,

KI(F) =) ep > 7p(Hp(vh) — Tp)Kr.p.a(vh).

PeF ~YEPL(F)\ GLA(F)

T o T
() = /M KT (hyn(h)dh.
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Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
P=MN, P,:=PNGL, p=mp®np.

Kr.p.al Z f(h (M + N)h)dh.
Memp(F) “ P
T truncation parameter,

KI(F) =) ep > 7p(Hp(vh) — Tp)Kr.p.a(vh).

PeF ~YEPL(F)\ GLA(F)

T o T
() = /M KT (hyn(h)dh.

Zydor: absolutely convergent, exponential polynomial in T, pure

polynomial term is a constant =: I,(f).
14



Geometric terms

o X €gl, 1(F) is (relatively) regular if its stabilizer if trivial.
e X is (relatively) regular semisimple, if it is regular and the orbit of X

is closed.

e a < A(F) is regular semisimple if it is the image of a regular

semisimple element. In this case, choose any X — a

I:(f) = Orb(X, f) = /G " f(h~1Xh)n(h)dh.
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Geometric terms

o X €gl, 1(F) is (relatively) regular if its stabilizer if trivial.
e X is (relatively) regular semisimple, if it is regular and the orbit of X

is closed.

e a < A(F) is regular semisimple if it is the image of a regular

semisimple element. In this case, choose any X — a

I:(f) = Orb(X, f) = /G " f(h~1Xh)n(h)dh.

e Q: Can we describe I,(f) for general a?

Chaudouard—Zydor: global semisimple descent, reduce to study /,(f)

for nilpotent a.
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Geometric terms

o X €gl, 1(F) is (relatively) regular if its stabilizer if trivial.

e X is (relatively) regular semisimple, if it is regular and the orbit of X
is closed.

e a < A(F) is regular semisimple if it is the image of a regular
semisimple element. In this case, choose any X — a

I:(f) = Orb(X, f) = /G " f(h~1Xh)n(h)dh.

e Q: Can we describe I,(f) for general a?
Chaudouard—Zydor: global semisimple descent, reduce to study /,(f)
for nilpotent a.
e Today: study the "regular part” of I,(f) for any a € A(F).
17



Regular orbit

o X €gl, 1(F) is (relatively) regular if its stabilizer if trivial.
® ac A(F), gl , = the fiber of a.

@ There are finitely many regular orbits in gl,,; ;.
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Regular orbit

o X €gl, 1(F) is (relatively) regular if its stabilizer if trivial.

a€ A(F), glpi1,, = the fiber of a.

There are finitely many regular orbits in gl 4 ,.

One special regular orbit: X is called +-regular if

ent+1, Xent1, -+ , X"ent1 are linearly independent.

Any a, there is a unique +-regular orbit in gl ,
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Regular orbit

X € gl 1(F) is (relatively) regular if its stabilizer if trivial.

a€ A(F), glpi1,, = the fiber of a.

There are finitely many regular orbits in gl 4 ,.

One special regular orbit: X is called +-regular if

ent+1, Xent1, -+ , X"ent1 are linearly independent.

Any a, there is a unique +-regular orbit in gl ,

@ ar.s.s, +-regular orbit = the unique orbit above a.

a =0, X = the principal Jordan block (1 above the diagonal)

20



Regular contribution

Theorem (L. 24)

If f is supported in +-regular open subset. For a € A(F), choose X + a,
then the integral

Orb(X, f,s) = / f(h~LXh)n(h)|det h|*dh

GL,(A)

is convergent when Re(s) < 0, and has analytic continuation to s = 0.
Moreover

lL(f) = Orb(X, £, 0).




Regular contribution

Theorem (L. 24)

If f is supported in +-regular open subset. For a € A(F), choose X + a,
then the integral

Orb(X, f,s) = / f(h~LXh)n(h)|det h|*dh

GL,(A)

is convergent when Re(s) < 0, and has analytic continuation to s = 0.
Moreover

lL(f) = Orb(X, £, 0).

We have a more general theorem for f supported in the regular subset.
I(f) = Orb(X;, f,0),
i

the sum runs through regular orbits agove a.



Sketch of the proof

o Zydor:

reg
L(f,s) = / Kr ()17 ()| x| dix,
[GLx]

defined as constant term of the exponential polynomial
F(Fs) = [ KT lxa
[GL.]
@ Show that under the assumption

lim L] (f,s)=I(f,s) = Orb(X, f,s)

T—oo

when Re(s) < 0, by computing explicitly the exponents.
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Local theory

The global Orb(X, f,s) is Eulerian, leading to the study of local integrals.
e E/F quadratic ext'n of local fields, n : F* — {£1} quadratic char.

o feS(gl,1(F)).
@ X be a +-regular element — a € A(F).
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Local theory

The global Orb(X, f,s) is Eulerian, leading to the study of local integrals.
e E/F quadratic ext'n of local fields, n : F* — {£1} quadratic char.
o f € S(aly1(F)).
@ X be a +-regular element — a € A(F).

We consider

Orb(X, f,s) := / f(h~1Xh)n(h)|det h|*dh.
GLn(F)

Fact:

e Orb(X,f,s) is convergent for Re(s) < 1 — 1, and has meromorphic

continuation to C.
@ Poles are controlled by an abelian L-function: 3L,(s) = g.c.d
Orbf(X, f,s) := Orb(X, f,s)/L.(s) is entire.
25



Local transfer

@ arss, Ly(s) =1.

0 a=0, Ly(s) = L(—s,n)L(—25s —1,7%)---L(—ns — n+1,7").
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Local transfer

@ arss, Ly(s) =1.

0 a=0, Ly(s) = L(—s,n)L(—25s —1,7%)---L(—ns — n+1,7").

Orbital integral can be compared to orbital integral on the unitary group.
@ H isom. class of n-dim Hermitian spaces.
o VeH,u¥ :={X e Ende(V) | X self-adjoint}, U(V) acts on u" by
conjugation.
o VeH, V' :=VaE. Consider U(V) action on u"’,
@ The GIT quotient 1"’ /U(V) can be identified with A.

@ We have similar notion of regular and regular semisimple element.
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Local transfer contd.

Fact: for any a € A(F) r.s.s., there exists a unique V € H such that
uY’(F) (the fiber of a) # @.
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Local transfer contd.

Fact: for any a € A(F) r.s.s., there exists a unique V € H such that
uY’(F) (the fiber of a) # @.

f € S(glyy1(F)) and ¥ € S(uV')(F). f and £V are transfer if for any
a € A(F) rs.s., we have

Orb(X, flw(X) = Orb(XY, f¥),

where
o V € H such that uY'(F) # @.
@ w(X) is the transfer factor (s.t. Orb only depends on a but not X).
o XV aand Orb(XV, V) = fU(V)(F) fY(h=tXVh)dh.

20



Local singular transfer

Our local theorem states that when f and (f")\e matches, then for any
a € A(F), the regular orbital integral also matches with the semisimple

orbital integral.

Theorem (L. 24)

For matching f and (fV)yecy, we have

Orb*(X, f,0)w(X) = Y eyOrb(Y, fY),
(Y,V)

where the sum runs through (Y, V), s.t. Y is a semisimple orbits in uY".

v

regular orbital integral on GL, = (stable) semisimple orbital integral on U,,.

30



Sketch of the proof

@ Zhang: Relative semisimple descent:

regular orb. = r.s.s orb. X reg. unipotent orb.
@ Reduce the the r.s.s and the unipotent case.
@ r.s.s. case follows from the definition.

@ Beuzart-Plessis: regular unipotent case using Fourier transform

commutes with transfer (due to Zhang, Xue).

1
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Local singular transfer revisited

Local singular transfer:

Orb (X, f,0)w(X) = Y cyOrb(Y, fY),
(Y.V)
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Local singular transfer revisited

Local singular transfer:

Orb (X, f,0)w(X) = Y cyOrb(Y, fY),
(Y.V)

Specialize to X € gl (F) of the form

(5 )

On the RHS, semisimple Y — a lies in uV(F) C uV/(F).
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Local singular transfer revisited

Local singular transfer:

Orb (X, f,0)w(X) = Y cyOrb(Y, fY),
(Y.V)

Specialize to X € gl (F) of the form

A v
X =
0 0
On the RHS, semisimple Y — a lies in u"(F) c uY'(F).

RHS = usual stable orbital integral! (cy = Kottwitz sign of stabilizer)
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Local singular transfer revisited

Local singular transfer:
Orb (X, f,0)w(X) = Y cyOrb(Y, fY),
(Y,v)

Specialize to X € gl (F) of the form

(o)

On the RHS, semisimple Y — a lies in u"(F) c uY'(F).
RHS = usual stable orbital integral! (cy = Kottwitz sign of stabilizer)

Regular orbital integral on gl, x F" < Stable orbital integral on u"
gty g

36



Globalization

Design an RTF that realizes the above local comparison.
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Globalization

Design an RTF that realizes the above local comparison.
e E/F quad. ext'n of number fields, n : Af — {+1} quad. character.
® G =Resg/FGLye, H=GL,F.
o f € S(GLy(Ag)), ® € S(A").
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Globalization

Design an RTF that realizes the above local comparison.
e E/F quad. ext'n of number fields, n : Af — {+1} quad. character.
® G =Resg/FGLye, H=GL,F.
o f € S(GLy(Ag)), ® € S(A").

Consider

I(F @ ®,5) = / / Ke(x, y)@(x, ®)11(x)"1(y) ™ x| dcly.
[GLA] J[GL4]

where O(x,®) = > P(xv).

30



Geom. side global J-R Local reg. orb on gl ;

a new RTF Local reg. orb on gl, x F”
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Geometric expansion

I(fo®,s) = /[H] /[H] Ke (%, ¥)8(x, ®)n(x)"n(y)™ x| *dxdy.
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Geometric expansion

I(fo®,s) = /[H] /[H] Ke (%, ¥)8(x, ®)n(x)"n(y)™ x| *dxdy.

Geometrically, GL, g x F"/ GL,, x GLp, the action is given by

(g,v) (x,y) = (x""gy,x7'v)
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Geometric expansion

I(f @ ®,s) = / / Kf(x,y)@(x,¢>)n(x)"17(y)”+1|x\5dxdy.
[H] /[H]
Geometrically, GL, g x F"/ GL,, x GLp, the action is given by
(g7 V) : (va) = (X_lgyax_lv)

Facts:
o Infinitesimally looks like (gl, xF")/ GL,,

@ 1 canonical identification

GlLng XF"/ GLy x GLy 2 U(V)/conjU(V)
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Geometric expansion

I(f @ ®,s) = / / Kf(x,y)@(x,¢>)n(x)"17(y)”+1|x\5dxdy.
[H] /[H]
Geometrically, GL, g x F"/ GL,, x GLp, the action is given by
(g7 V) : (va) = (X_lgyax_lv)

Facts:

o Infinitesimally looks like (gl, xF")/ GL,,

@ 1 canonical identification

GlLng XF"/ GLy x GLy 2 U(V)/conjU(V)

Upshot: it can be compared to the STF on the unitary group!
44



Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
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Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
P € F — a partial O-series pO(x, P).

ng@(x:y) =

> ep > 7p(Hp(vx) — Tp)Kp,(7x,dy)pO(vx, ®)
PEF  ~.6ePy(F)\GLA(F)
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Regularization

F := {semistandard psgps of GL,;+1 s.t. PN GL,, is standard}.
P € F — a partial O-series pO(x, P).

KfEQ(D(va) =

Z ep Z 7p(Hp(yx) — Tp)Kp,(7x, 6y)pO(7x, ®)
PEF  ~,6€Pa(F)\ GL,(F)

T(Fos)i= [ [ Kbyt ny)" decy | da.
[GLA] /[GL,]

Theorem (Chen-L.-Zhang)

Absolutely convergent, exponential polynomial in T, pure polynomial term

is constant (:= I(f ® ®,s)) whenever s # 0,1, meromorphic in s.
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Partial ©-function

F := {semistandard psgps of GL,;1 s.t. PN GL, is standard}.
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Partial ©-function

F := {semistandard psgps of GL,;1 s.t. PN GL, is standard}.

Vi, = the last row of mp, V), := the last row of np.

PO(x,®) = ) / d(x(M + N))dN.
MV, (F) Vi (4)

40



Partial ©-function

F := {semistandard psgps of GL,;1 s.t. PN GL, is standard}.

Vi, = the last row of mp, V), := the last row of np.

PO(x,®) = ) / d(x(M + N))dN.
MV, (F) Vi (4)

@ P = GLp41, the usual © function.

@ P lower triangular, Levi GL, x GL;1, p©(x, ®) = ¢(0).
o P upper triangular, Levi GL, x GL1, p©(x, ®) = |x|~1®(0).
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Partial ©-function

F := {semistandard psgps of GL,;1 s.t. PN GL, is standard}.

Vi, = the last row of mp, V), := the last row of np.

PO(x,®) = ) / d(x(M + N))dN.
MV, (F) Vi (4)

@ P = GLp41, the usual © function.

@ P lower triangular, Levi GL, x GL;1, p©(x, ®) = ¢(0).
o P upper triangular, Levi GL, x GL1, p©(x, ®) = |x|~1®(0).

Partial ©-function also appears in a joint work with Boisseau and Xue on

the GGP conjecture for Fourier-Jacobi periods.
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Test functions

fod=~r,(f®d,)ecS(GL,(Ag) x A}) is a nice test function, if

e Ja non-Arch v s.t. f,, is truncated matrix coefficient of

supercuspidal representation.

e T a non-Arch vy # vq split in E s.t supp(f,,) C the elliptic locus.

5D



Test functions

fod=~r,(f®d,)ecS(GL,(Ag) x A}) is a nice test function, if

e Ja non-Arch v s.t. f,, is truncated matrix coefficient of

supercuspidal representation.
e T a non-Arch vy # vq split in E s.t supp(f,,) C the elliptic locus.

Let Vo be the split Hermitian space, U := U(Vp).
We say that f = ®f, € S(U(A)) is a nice test function, if

e Janon-Arch v; s.t. f,, is truncated matrix coefficient of

supercuspidal representation.

e Ja non-Arch v» # vy split in E s.t supp(f,,) C the elliptic locus.

5%



Comparison

Theorem (L. 2025)

Let f ® ® and fY° be matching nice test functions. Then
e The distribution |(f ® ®,s) is holomorphic at s = 0.
o We have 2I(f ® ®,0) = S(f').
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Comparison

Theorem (L. 2025)
Let f ® ® and fY° be matching nice test functions. Then

e The distribution |(f ® ®,s) is holomorphic at s = 0.
o We have 2I(f ® ®,0) = S(f\0).

Some remarks:
@ The distribution /(f ® ®,s) on S(GL,(Ag) x AL) is stable in the

sense that
s £0,1,g € GLo(Ar) — I(R(g)(f © ®),5) = n(g)lgl*I(F & ,5).
However, it has pole at s = 0.

@ One expects there is some way to stabilize the GL, and compare full

trace formulas.
1555
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Diagonal cycle

Trace formula on U = relative trace formula for U\U x U/U +

diagonal period.
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Diagonal cycle

Trace formula on U = relative trace formula for U\U x U/U +

diagonal period. Arithmetic version:
e E/F CM ext'n of number field.
e V n-dim’l Herm space, signature (n — 1,1),(n,0),---,(n,0).
@ X := Shy, X integral model over OF, abs. dim = n.

—~ n—1
o X — X X, X arithmetic diagonal cycle, A € CH (X x X).
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Diagonal cycle

Trace formula on U = relative trace formula for U\U x U/U +

diagonal period. Arithmetic version:
e E/F CM ext'n of number field.
e V n-dim’l Herm space, signature (n — 1,1),(n,0),---,(n,0).
@ X := Shy, X integral model over OF, abs. dim = n.
o X — X xp, X arithmetic diagonal cycle, A € (fl\-lnil(% x X).

Conjecture(Chen-L.-Zhang): m tempered cohomological,
(Ar, Ay, @) ~ L'(1,7m,Ad),

(-, -) denotes the Arakelov intersection pairing, @ is the (metrized) Hodge
bundle.
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Diagonal cycle cont'd

Lapid-Mao conjecture: for ¢ € m with W, (1) = 1, then

(p, ) ~ L(1,m, Ad).
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Diagonal cycle cont'd

Lapid-Mao conjecture: for ¢ € m with W, (1) = 1, then

(p, ) ~ L(1,m, Ad).

(n odd, Beuzart-Plessis—-Chaudouard, n even, Boisseau-L.-Xue.)
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Diagonal cycle cont'd

Lapid-Mao conjecture: for ¢ € m with W, (1) = 1, then

(p, ) ~ L(1,m, Ad).

(n odd, Beuzart-Plessis—-Chaudouard, n even, Boisseau-L.-Xue.)
Our conjecture
(Ar, Ar, @) ~ L’(1,7r,Ad),

can be regarded as an arithmetic analog.

Theorem (Chen-L.-Zhang)

The conjecture holds when n = 2.
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Diagonal cycle cont'd

Lapid-Mao conjecture: for ¢ € m with W, (1) = 1, then

(p, ) ~ L(1,m, Ad).

(n odd, Beuzart-Plessis—-Chaudouard, n even, Boisseau-L.-Xue.)
Our conjecture
(Ar, Ar, @) ~ L’(1,7r,Ad),

can be regarded as an arithmetic analog.

Theorem (Chen-L.-Zhang)

The conjecture holds when n = 2.

e n = 1: Faltings height of CM abelian variety (average Colmez conj.)
o Relative Langlands duality(Ben-Zvi-Sakellaridis-Venkatesh) provides a

general framework for periods (automorphic/geometric/arithmetic).
63



Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture
for Bessel case (Disegni—Zhang).
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Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture
for Bessel case (Disegni—Zhang).

In our setting, consider the arithmetic distribution J(f) = (R(f)A, A, &)
Main proposition: when f and (f’ ® ®) are transfer, then

d
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Comparison of arithemtic relative trace formula.

Proposed by Zhang, and success in the (p-adic) arithmetic GGP conjecture
for Bessel case (Disegni—Zhang).

In our setting, consider the arithmetic distribution J(f) = (R(f)A, A, &)
Main proposition: when f and (f’ ® ®) are transfer, then

d

o m-part of LHS: the intersection pairing we're interested in.

e m-part of RHS: L'(0, 7, Ad)

66



Stable character

@ E/F local, ¢ a tempered L-parameter of U.
o For each V, given f¥ € S(U(V)(F)).
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Stable character

@ E/F local, ¢ a tempered L-parameter of U.
o For each V, given f¥ € S(U(V)(F)).

S((FN=Y"" > ().

VeH meMy(U(V))

Stable character in a Vogan parket.
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Stable character

@ E/F local, ¢ a tempered L-parameter of U.
o For each V, given f¥ € S(U(V)(F)).
S((FN=Y"" > ().
VeH reM,(U(V))
Stable character in a Vogan parket.
For f, € S(GL,(E)) and & € S(F"), we put
In(f@®y,5)= > Zy(R(F)W,,,5)3(W),
WEBHV
and a normalized version
(@b, s)= Y ZiR(f)W,0,, )8 (W),
weBn,

Z local Flicker-Rallis zeta integral, 3 local Flicker-Rallis period.
60



Spectral comparison

Theorem (L. 25)
There exists C(¢) € C such that

Ss((FV)) = C(B)IE(F @ ©,0).

holds for all matching of function (fV) and f @ ®.




Spectral comparison

Theorem (L. 25)
There exists C(¢) € C such that

Ss((FV)) = C(B)IE(F @ ©,0).

holds for all matching of function (fV) and f @ ®.

Proof: globalization and using the global comparison



Thank you for your attention!!
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