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1 Context

1.1 The Rankin–Selberg period

Let F be a number field. Set G = GLn×GLn+1 and H = GLn embedded diagonally into G. Write
[H] = H(F )\H(A).

For π a cuspidal representation of G and φ ∈ π, the Rankin–Selberg period is

PH(φ) =
∫

[H]
φ(h)dh.

We have the following result.

Theorem 1.1.1 (Jacquet, Piatetski-Shapiro, Shalika). If φ = ⊗vφv ∈ π cuspidal, then

PH(φ) ∼ L(1/2, π)
∏
v∈S

Pv(φv), (1.1.1)

where S is a finite set of places of F , and the equality holds for explicit choices of measures.

1.2 The Jacquet–Rallis relative trace formula

Let E/F be quadratic. Write GE = ResE/F (GLn,E × GLn+1,E) and HE = ResE/F GLn,E . The
Jacquet–Rallis trace formula is taken relatively to HE\GE/G. More precisely, for f ∈ C∞

c (GE(A))
its spectral expansion is (if we ignore all convergence issues)

∫
[HE ]

∫
[G]

Kf (h, g)η(g)dgdh =
∑

πE cusp. of GE

∑
φ∈ONB(πE)

PHE
(πE(f)φ)PG,η(φ) + (. . .), (1.2.1)

where η is some quadratic character and PG,η is the Flicker–Rallis period which detects the image
of base change from unitary groups. The (. . .) corresponds to the non-cuspidal terms.

Jacquet and Rallis proposed to relate this relative trace formula to another one corresponding to
U(Vn)\U(Vn)×U(Vn+1)/U(Vn), where Vn and Vn+1 are Hermitian spaces of dimensions n and n+1.
The spectral expansion of this trace formula makes the period along [U(Vn)] appear. According to
the Gan–Gross–Prasad conjecture, if π is a cuspidal representation of U(Vn)×U(Vn+1) we should
have a relation
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(∫
[U(Vn)]

φ(h)dh, φ ∈ π

)
←→ L(1/2, BC(π)).

By combining the equality (1.1.1) given by the theorem of JPSS and the spectral expansion
(1.2.1) of the RTF on the GL-side, we can hope to prove the conjecture by comparing the two
RTFs.

Question: How much do we need to know about the non-cuspidal part (. . .) in (1.2.1) ?
If π is cuspidal, BC(π) might not be, so it is necessary to go beyond a simple trace formula.

In 2022, Beuzart-Plessis, Chaudouard and Zydor proved the GGP conjecture for the π’s such that
BC(π) is generic. In particular, they computed the generic part of the (. . .) terms of (1.2.1).

1.3 This talk

Question: What about the non-generic terms in (. . .) ?
In the framework of GGP, understanding these non-generic terms is related to the non-generic

conjecture formulated by Gan, Gross and Prasad in 2020. In this talk, we will give some results
towards the computation of the fine spectral expansion of the Jacquet–Rallis trace formula (1.2.1).
More precisely, we focus on the integral associated to the Rankin–Selberg period, so that our goal
is to compute the spectral expansion of the distribution

f ∈ S([GE ]) 7→
∫

[HE ]
f(h)dh. (1.3.1)

We will do so in two parts:

1. We will describe periods associated to non-generic representations that will appear in the
expansion of (1.3.1). This extends the results of JPSS.

2. We will write the fine spectral expansion of (1.3.1).

For the Flicker–Rallis period PG,η, this work has been carried out by Chaudouard in a recent
paper. In a future work we hope to combine our results with his to compute the expansion of the
trace formula itself.

2 Non-generic Rankin–Selberg periods
We now forget about the extension E/F , so that we go back to G = GLn ×GLn+1 and H = GLn.

2.1 Relevant representations of Arthur type

We want to extend PH to non-generic representations. We are interested in the ones appearing
in the trace formula, i.e. in the constituents (either discrete or continuous) of L2([G]). We say
that these automorphic representations are of Arthur type, and we denote their set of isomorphism
classes by ΠArt(G).

If it exists, the extension of PH to a π ∈ ΠArt(G) might be zero for local reasons as there
may not exist a non-zero H(Fv)-invariant linear form on πv. If such a linear form exists, we say
that πv is distinguished. Gan Gross and Prasad have given a conjectural characterization of these
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representations in terms of local Arthur parameters (which are said to be relevant). It is now a
theorem of Gurevitch and Chan at non-Archimedean places, and Chen and Chen at Archimedean
places (in fact they use Theorem 2.3.1 below). In any case, by globalizing this local relevance
condition we obtain a global one. We denote the set of relevant automorphic representations of
Arthur type by ΠH

Art(G). We now describe it.
If σ is a cuspidal representation of some GLr, we define the derivative of Speh(σ, d) by

Speh(σ, d)− = Speh(σ, d− 1).

If d = 1, then Speh(σ, d)− is the trivial representation of the trivial group. We then declare that
π = πn ⊠ πn+1 ∈ ΠH

Art(G) if π is a parabolic induction of the form

πn = (π1,1 × . . .× π1,m1)×
(
π−,∨

2,1 × . . .× π−,∨
2,m2

)
, (2.1.1)

πn+1 =
(
π−,∨

1,1 × . . .× π−,∨
1,m1

)
× (π2,1 × . . .× π2,m2) , (2.1.2)

where the π1,i and π2,i are all Speh representations.
We have the following important examples.

• Cuspidal representations π are relevant. The above decomposition reduces to πn = π1,1 and
πn+1 = π2,1 cuspidal.

• Generic representations π in ΠArt(G) are relevant. Indeed, by the classification of the discrete
spectrum from Mœglin and Waldspurger, this is equivalent to πn = π1,1 × . . . × π1,m1 and
πn+1 = π2,1 × . . .× π2,m2 , where the π1,i and π2,i are all cuspidal.

2.2 A special value of L-functions

Let π ∈ ΠH
Art(G). For a ∈ {1, 2}, write πa,i = Speh(σa,i, da,i). We then define

L(π) =
∏

i,j L∗
(

d1,i−d2,j+1
2 , σ1,i × σ2,j

)
∏

a∈{1,2}
∏

i<j L
(

da,i+da,j

2 , σa,i × σ∨
a,j

) ,

where L∗ is the residue of the L-function if it has a pole at that point. Note that the notation is
slightly abusive as L(π) depends on the inducing datum and not only on the isomorphism class of
π. We have two examples.

• If π is cuspidal, then L(π) = L(1/2, π).

• If π = IG
P σ with σ cuspidal, then L(π) is the quotient of L-functions appearing in the Euler

product of Rankin–Selberg Zeta integrals induced from σ, i.e. for φ ∈ ⊗vφv ∈ π

Z(φ, λ) = L(IG
P σλ)

∏
v∈S

Z♯
v(φv, λ),

where the Z♯
v(φv, λ) are normalized local Zeta integrals.
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2.3 The theorem

The following result is the non-generic GGP conjecture for Rankin–Selberg periods (i.e. the split
Bessel case).

Theorem 2.3.1. The following assertions hold.

1. The period PH extends naturally to ΠH
Art(G).

2. For π ∈ ΠH
Art(G) and φ = ⊗vφv ∈ π, we have

PH(φ) ∼ L(π)
∏
v∈S

Pv(φv).

3. The local periods Pv are non-zero on πv.

2.4 Construction of PH

In 2015, Ichino and Yamana built an extension PIY
H of PH , defined (almost) on ΠArt(G). Moreover,

if π = IG
P σ ∈ ΠArt(G) with σ discrete (non-necessarily cuspidal), they showed that it computes

Zeta functions, i.e. for φ ∈ π
PIY

H (E(φ, λ)) = Z(φ, λ). (2.4.1)

However, because Z(φ, λ) is defined in terms of a Whittaker function, this implies that PIY
H (E(φ, λ))

is zero as soon as π is not generic.
To circumvent this issue, we use the following strategy. Let π ∈ ΠH

Art(G). We know that it is a
quotient of some IG

P σν for σ cuspidal and ν ∈ a∗
P by taking residues of Eisenstein series. We want

to prove a factorization of the form

IG
P σν π

C

E∗

Res
λ=ν

PIY
H (E(φ,λ))

PH

(2.4.2)

We now explain which residues to consider.
The natural choice is to take residues along the singularities of the Eisenstein series E at ν.

However, we can show that along such singularities we have

Res
λ=ν
PIY

H (E(φ, λ)) = PIY
H (Res

λ=ν
E(φ, λ)) = 0, (2.4.3)

where the last equality comes from the fact that residual Eisenstein series are non-generic. So this
is not the correct method.

It turns out that the meromorphic map λ 7→ PIY
H (E(φ, λ)) has other residues passing through

ν. Indeed, PIY
H is defined à la Jacquet–Lapid–Rogawski as the pure polynomial term of some

truncated period T 7→ PT
H . This pure polynomial term will only be constant if λ lies outside of some

hyperplanes (what really matters here are the cuspidal exponents of E(φ, λ)). These hyperplanes
yield singularities of λ 7→ PIY

H (E(φ, λ)). By taking the residues along these hyperplanes, we can
show that

Res
λ=ν
PIY

H (E(φ, λ)) = PQ
HEQ(M∗(w, ν)φ, wν). (2.4.4)
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Here PQ
H is some relative regularized period which is a generalization of PIY

H relatively to a parabolic
subgroup Q ⊂ G, and EQ(M∗(w, ν)φ, wν) is a partial Eisenstein series applied to a regularized
global intertwining operator M∗(w, ν)φ, and w some element in the Weyl group. To prove (2.4.4),
one uses the fact that regularized and truncated periods can be related to one another using Maass–
Selberg relations, which makes the computation of the residue possible.

The slogan is that the residue of a regularized period PIY
H (E(φ, λ)) is a relative regu-

larized period PQ applied to parts of the constant term of E(φ, λ) along Q.
It turns out that M∗(w, ν) also realizes the quotient IG

P σν → π in (2.4.2), so that we indeed
obtain the desired factorization. Therefore, Res

λ=ν
PIY

H (E(φ, λ)) defines the extension PH of the first
point of Theorem 2.3.1.

We highlight the differences between the two kind of residues in an example. For G = GL1×GL2,
consider the induction

Iλ = |·|λ1 ⊠
(
|·|λ2 × |·|λ3

)
.

Using the factorization of Zeta functions, for φ ∈ I0 we have

PIY
H (E(φ, λ)) = ζF (λ1 + λ2 + 1/2)ζF (λ1 + λ3 + 1/2)

ζF (λ2 − λ3 + 1)
∏
v∈S

Z♯
v(φ, λ).

There is no singularity along λ2 − λ3 = 1, so that we recover (2.4.3). The residues taken in (2.4.4)
are along λ1 + λ2 = 1/2 and λ1 + λ3 = −1/2.

To prove the second point of Theorem 2.3.1, i.e. the Euler product expression, we use Zeta
functions. Indeed, by the main theorem of Ichino and Yamana we have

Res
λ=ν
PIY

H (E(φ, λ)) = Res
λ=ν

Z(φ, λ) =
(

Res
λ=ν
L(IG

P σλ)
) ∏

v∈S

Z♯
v(φ, λ) = L(π)

∏
v∈S

Z♯
v(φ, λ). (2.4.5)

This gives the Euler product expansion of Theorem 2.3.1. Note that the two distinct computations
of the residue yield different information about PH , and are both necessary in the proof.

2.5 About local Zeta functionals

The expression in (2.4.5) tells us what the linear forms Pv of Theorem 2.3.1 are: they are normalized
local Zeta integrals, a priori defined on the induction IG

P σv,ν , and it turns out that they factorize
through the quotient IG

P σv,ν → πv as they do so globally (see (2.4.4)).
It remains to prove that they are non-zero. This follows from this factorization property com-

bined with a result of JPSS. This proves the "relevance implies distinction" part of the local non-
generic GGP for split Bessel periods (this result was already known by different methods in the
p-adic case, but is new in the Archimedean case). Note that here we a global argument to prove that
Z♯

v passes through the quotient IG
P σv,ν → πv, but an alternative proof using purely local arguments

can be given in the p-adic case using asymptotics of Whittaker functions.

3 The fine spectral expansion of the Rankin–Selberg period

3.1 Enhanced relevant representations of Arthur type

We now go back to our initial goal, which was to compute the spectral expansion of

f ∈ S([G]) 7→
∫

[H]
f(h)dh.
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We could expect that it involves the relevant representations in ΠH
Art(G), but surprisingly other

representations appear. To describe them, we introduce the set ΠH
Art(G)+ of enhanced relevant

representations of Arthur type.
More precisely, we say that π = πn ⊠ πn+1 belongs to ΠH

Art(G)+ if it can be writen as an
induction

πn =
(
π+,1 × . . .× π+,m+

)
× πk ×

(
π−,1 × . . .× π−,m−

)
,

πn+1 =
(
π∨

+,1 × . . .× π∨
+,m+

)
× πk+1 ×

(
π∨

−,1 × . . .× π∨
−,m−

)
,

where πk ⊠ πk+1 is a relevant representation of Arthur type in ΠH
Art(GLk × GLk+1), and the π+,i

and π−,i are Speh. We write π = IG
P τ , where τ is a product of Speh’s. We also impose that all the

central characters of the π.,i are trivial on the Archimedean components of the split centers of each
GL. Then if we write πk ⊠ πk+1 as in (2.1.1) and (2.1.2), we can write the Levi MP as

MP =
(
M+ ×M1 ×M−

2 ×M−
)
×
(
M+ ×M−

1 ×M2 ×M−
)

,

where ⊠m+
i=1π+,i is a representation of M+, ⊠m1

i=1π1,i of M1 and so on. Relatively to this decompo-
sition we define a subspace a∗

π of unramified characters of P by

a∗
P,C ⊃ a∗

π,C = {((λ+, λ1,−λ2, λ−), (−λ+,−λ1, λ2,−λ−))} .

Then ia∗
π is the subspace of unitary unramified characters such that πλ := IG

P τλ is still relevant
(in the enhanced sense) if we lift the condition on the central characters. Finally, we define a
non-unitary unramified character ρπ by the formula

ρπ = ((1/4, 0, 0,−1/4), (1/4, 0, 0,−1/4)) ∈ a∗
P , (3.1.1)

where we still use the same coordinates. Note that if π ∈ ΠH
Art(G), so that m+ = m− = 0, ρπ is

zero.
We claim that PH can be extended to πλ for π ∈ ΠH

Art(G)+ and λ ∈ a∗
π,C − ρπ. More precisely,

for φ ∈ π, the map λ 7→ PH(φ, λ) is a meromorphic function on a∗
π,C − ρπ. The twist by ρπ is

necessary here, as otherwise the induction might not have a non-zero H(A)-invariant linear form.

3.2 The result

Our result is the following. It is a work in progress at the proof is not released as of today.

Theorem 3.2.1 (WIP). For f ∈ S([G]), we have∫
[H]

f(h)dh =
∑

π∈ΠH
Art(G)+

∑
φ∈ONB(π)

cπ

∫
ia∗

π−ρπ

⟨f, E(φ,−λ)⟩PH(φ, λ)dλ,

where the cπ are some explicit constants and

⟨f, E(φ,−λ)⟩ =
∫

[G]
f(g)E(g, φ,−λ)dg. (3.2.1)

Here are some remarks on the result.
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• The choice of ρπ is somehow arbitrary, as it is really the space a∗
π,C − ρπ that matters here

(which means that the sums of the first and last coordinates in (3.1.1) have to be 1/2, and
−1/2). However, in the formula of (3.2.1) we also want to avoid possible poles of Eisenstein
series, so that we have to restrict to ρπ of the form

ρπ = ((t, 0, 0,−s), (1/2− t, 0, 0,−1/2 + s)), 0 < t, s < 1/2.

• The representations πλ which support the expansion (3.2.1) might not be unitary.

• The function λ 7→ PH(φ, λ) may have poles in the region of integration, but the product
⟨f, E(φ,−λ)⟩PH(φ, λ) is regular.

3.3 About the proof

The general idea is to proceed by shift of contours, following the philosophy of the proof of the
spectral decomposition of the scalar product by Langlands, starting from pseudo-Eisenstein series.
The main ingredients are of the following nature.

• For the convergence of the integrand (and its holomorphicity), we use the existence of zero-free
regions of Rankin–Selberg L-functions (due to Brumley and Lapid) and of bounds towards
the generalized Ramanujan conjecture (Luo, Rudnick, Sarnak).

• During the shift of contours, we will catch some poles. They may come either from the
regularized period PH , or from the Eisenstein series E(φ,−λ). As we explained, the period
PH is built via residues, so that the residues of PH appearing in the proof of the theorem
will be new regularized periods. These contributions are not too difficult to understand. In
contrast, we need some precise results on the singularities of the residual Eisenstein series
E(φ,−λ). It turns out that they are more or less contained in the paper of Mœglin and
Waldspurger on the discrete spectrum of GLn.

• The shift of contours can be realized in such a way that a some point a spectral decomposition
of a scalar product appears. It is then possible to use the theorem of Langlands as an input,
which avoids some very difficult computation. In particular, by proceeding this way it turns
out that all the residues that are obtained through the shift contribute in the final formula
(3.2.1), so that in some sense the intricate compensations are taken care of by Langlands’
result.
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