BZSV Duality and Relative Trace Formula

Zhengyu Mao

Rutgers - Newark

17/7/2025 at Nisyros

- 1. Background on period integrals
- 2. BZSV duality conjecture
- 3. Relative trace formula

The theme of the talk is the relation between period integrals of automorphic forms and L-values.

Waldspurger's formula: Fourier coefficients are related to values of L-functions.

The theme of the talk is the relation between period integrals of automorphic forms and L-values.

Waldspurger's formula: Fourier coefficients are related to values of L-functions.

If f is weight 2k cusp form of level 1, with a(1) = 1. g the corresponding level 4 weight $k + \frac{1}{2}$ form, in Kohnen plus space.

$$g(z) = \sum_{n>0} c(n)e^{2\pi i nz}, \ c(n) = 0 \text{ when } (-1)^k n \equiv 2,3 \text{ mod } 4$$

The theme of the talk is the relation between period integrals of automorphic forms and L-values.

Waldspurger's formula: Fourier coefficients are related to values of L-functions.

If f is weight 2k cusp form of level 1, with a(1) = 1. g the corresponding level 4 weight $k + \frac{1}{2}$ form, in Kohnen plus space.

$$g(z) = \sum_{n \ge 0} c(n)e^{2\pi i n z}, \ c(n) = 0 \text{ when } (-1)^k n \equiv 2,3 \text{ mod } 4$$

Kohnen-Zagier 1981

$$\frac{L(f,k)}{\|f\|^2} \frac{(k-1)!}{\pi^k} = \frac{|c(1)|^2}{\|g\|^2}.$$

The theme of the talk is the relation between period integrals of automorphic forms and L-values.

Waldspurger's formula: Fourier coefficients are related to values of L-functions.

If f is weight 2k cusp form of level 1, with a(1) = 1. g the corresponding level 4 weight $k + \frac{1}{2}$ form, in Kohnen plus space.

$$g(z) = \sum_{n \ge 0} c(n)e^{2\pi i n z}, \ c(n) = 0 \text{ when } (-1)^k n \equiv 2,3 \text{ mod } 4$$

Kohnen-Zagier 1981

$$\frac{L(f,k)}{\|f\|^2} \frac{(k-1)!}{\pi^k} = \frac{|c(1)|^2}{\|g\|^2}.$$

There are two aspects of this result:

- 1. Fourier coefficient of g(z) is related to L-value attached to g.
- 2. The correspondence between f and g is a case of Langlands functoriality, L-value of g equals to L-value of f.

Gan-Gross-Prasad, Ichino-Ikeda conjecture

If π_1, π_2 are irreducible automorphic representations of SO_n and SO_m with n > m, let $\phi_1 \in \pi_1, \phi_2 \in \pi_2$, then

$$\frac{|\int_{[\mathsf{SO}_m]} \mathcal{F}\phi_1(g)\phi_2(g) \ dg|^2}{\|\phi_1\|^2 \|\phi_2\|^2} \sim \frac{L(\frac{1}{2}, \pi_1 \times \pi_2)}{L(1, \pi_1, \mathsf{Ad})L(1, \pi_2, \mathsf{Ad})}.$$

Here \sim means the equality holds up to some local integrals over finitely many local places and a global factor in a fixed finite set.

 $\mathcal{F}\phi_1$ is a Fourier coefficient of ϕ_1 :

$$\mathcal{F}\phi_1(g)=\int_{[U]}\phi_1(ug)\psi^{-1}(u)\;du$$

for a suitable unipotent subgroup U of SO_n and a suitable ψ .

Gan-Gross-Prasad, Ichino-Ikeda conjecture

If π_1, π_2 are irreducible automorphic representations of SO_n and SO_m with n > m, let $\phi_1 \in \pi_1, \phi_2 \in \pi_2$, then

$$\frac{|\int_{[\mathsf{SO}_m]} \mathcal{F}\phi_1(g)\phi_2(g) \ dg|^2}{\|\phi_1\|^2 \|\phi_2\|^2} \sim \frac{L(\frac{1}{2}, \pi_1 \times \pi_2)}{L(1, \pi_1, \mathsf{Ad})L(1, \pi_2, \mathsf{Ad})}.$$

Here \sim means the equality holds up to some local integrals over finitely many local places and a global factor in a fixed finite set.

 $\mathcal{F}\phi_1$ is a Fourier coefficient of ϕ_1 :

$$\mathcal{F}\phi_1(g)=\int_{UI}\phi_1(ug)\psi^{-1}(u)\;du$$

for a suitable unipotent subgroup U of SO_n and a suitable ψ .

When m=1 the conjecture is about the relation between Fourier coefficient and L-value.

Gan-Gross-Prasad, Ichino-Ikeda conjecture

If π_1, π_2 are irreducible automorphic representations of SO_n and SO_m with n > m, let $\phi_1 \in \pi_1, \phi_2 \in \pi_2$, then

$$\frac{|\int_{[\mathsf{SO}_m]} \mathcal{F}\phi_1(g)\phi_2(g) \ dg|^2}{\|\phi_1\|^2 \|\phi_2\|^2} \sim \frac{L(\frac{1}{2}, \pi_1 \times \pi_2)}{L(1, \pi_1, \mathsf{Ad})L(1, \pi_2, \mathsf{Ad})}.$$

Here \sim means the equality holds up to some local integrals over finitely many local places and a global factor in a fixed finite set.

 $\mathcal{F}\phi_1$ is a Fourier coefficient of ϕ_1 :

$$\mathcal{F}\phi_1(g)=\int_{UU}\phi_1(ug)\psi^{-1}(u)\;du$$

for a suitable unipotent subgroup U of SO_n and a suitable ψ .

When m = 1 the conjecture is about the relation between Fourier coefficient and L-value.

Main progress: For unitary group, the conjecture is known for n = m + 2d + 1.

Relative trace formula: the method used to prove Gan-Gross-Prasad for unitary group. Work by W. Zhang, Z.Yun, Beuzart-Plessis-Chaudouard (2025) based on a relative trace

Relative trace formula: the method used to prove Gan-Gross-Prasad for unitary group. Work by W. Zhang, Z.Yun, Beuzart-Plessis-Chaudouard (2025) based on a relative trace formula conjectured by Jacquet-Rallis:

Relate the conjecture to a similar statement on general linear group, where the identity can be proved using Rankin-Selberg method.

Rest of the talk:

Describe the duality conjecture of Ben-Zvi-Sakellaridis-Venkatesh, which is about both functoriality and period integral.

Discuss a relative trace formula approach to BZSV duality.

BZSV duality is about two dual quadruples Δ and $\hat{\Delta}$.

ightharpoonup is a homomorphism $SL_2 \mapsto G$ whose image commutes with H.

$$\Delta = (G, H, \rho_H, \iota)$$
 where

► *G* is a split reductive group

$$\triangleright$$
 H is a subgroup of G

BZSV duality is about two dual quadruples Δ and $\hat{\Delta}$.

$$\Delta = (G, H, \rho_H, \iota)$$
 where

► *G* is a split reductive group

- $\triangleright \iota$ is a homomorphism $SL_2 \mapsto G$ whose image commutes with H.
- ho_H is a symplectic anomaly free representation of H (meaning we can define Theta function on H.)
- ▶ The Hamiltonian space associated to Δ is hyperspherical. (with respect to ι , H is not too small–refer questions to Y.S.)

BZSV duality is about two dual quadruples Δ and $\hat{\Delta}$.

 $\Delta = (G, H, \rho_H, \iota)$ where

- ► *G* is a split reductive group
- \triangleright H is a subgroup of G
- \triangleright ι is a homomorphism $SL_2 \mapsto G$ whose image commutes with H.
- ho_H is a symplectic anomaly free representation of H (meaning we can define Theta function on H.)
- ▶ The Hamiltonian space associated to Δ is hyperspherical. (with respect to ι , H is not too small–refer questions to Y.S.)

The period integral attached to Δ is (for $\phi \in \pi$ on G)

$$\mathcal{P}_{\Delta}(\phi,\Theta) = \int_{[H]} P_{\iota}(\phi)(h)\Theta(h) \, dh.$$

Here P_{ι} is a Fourier coefficient of ϕ determined by ι , and Θ is in a space of theta functions on H determined by ρ_H .

Given $\Delta = (G, H, \rho, \iota)$, there is $\hat{\Delta} = (G', H', \rho', \iota')$, so that

 $ightharpoonup G'=\hat{G}$ is the Langlands dual of G.

Given $\Delta = (G, H, \rho, \iota)$, there is $\hat{\Delta} = (G', H', \rho', \iota')$, so that

- $ightharpoonup G' = \hat{G}$ is the Langlands dual of G.
- ▶ If $\mathcal{P}_{\Delta}(\phi,\Theta)$ is nonvanishing, then π is a functorial lift from a representation Π of \hat{H}' (the dual of H'). (More precisely, the Arthur parameter of π factors through
- $\iota': H' \times \operatorname{SL}_2 \mapsto \hat{G}$.)

Given $\Delta = (G, H, \rho, \iota)$, there is $\hat{\Delta} = (G', H', \rho', \iota')$, so that

- $ightharpoonup G' = \hat{G}$ is the Langlands dual of G.
- ▶ If $\mathcal{P}_{\Delta}(\phi,\Theta)$ is nonvanishing, then π is a functorial lift from a representation Π of \hat{H}' (the dual of H'). (More precisely, the Arthur parameter of π factors through $\iota': H' \times SL_2 \mapsto \hat{G}$.)

$$\frac{|\mathcal{P}_{\Delta}(\phi,\Theta)|^2}{\|\phi\|^2\|\Theta\|^2} \sim \frac{L(\Pi,\rho',\iota')}{L(1,\Pi,Ad)^2}.$$

Here $L(\Pi, \rho', \iota')$ is a product of values of L-functions of Π determined by ρ' and ι' . These are not necessarily central values of the L-function.

Given $\Delta = (G, H, \rho, \iota)$, there is $\hat{\Delta} = (G', H', \rho', \iota')$, so that

- $ightharpoonup G' = \hat{G}$ is the Langlands dual of G.
- ▶ If $\mathcal{P}_{\Delta}(\phi, \Theta)$ is nonvanishing, then π is a functorial lift from a representation Π of \hat{H}' (the dual of H'). (More precisely, the Arthur parameter of π factors through $\iota': H' \times \mathsf{SL}_2 \mapsto \hat{G}$.)

$$rac{|\mathcal{P}_{\Delta}(\phi,\Theta)|^2}{\|\phi\|^2\|\Theta\|^2}\sim rac{L(\Pi,
ho',\iota')}{L(1,\Pi,Ad)^2}.$$

Here $L(\Pi, \rho', \iota')$ is a product of values of L-functions of Π determined by ρ' and ι' . These are not necessarily central values of the L-function.

▶ The dual assertions hold for the period $\mathcal{P}_{\hat{\Delta}}(\phi', \Theta')$ on G'.

A motivating example

When $\Delta = (SO_{2n+1} \times SO_{2n}, SO_{2n}, 0, 1)$, its dual is

$$\hat{\Delta} = (\mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, \mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, std, 1)$$

(std denotes the standard representation $\mathsf{Sp}_{2n} \times \mathsf{SO}_{2n} \mapsto \mathsf{Sp}_{4n^2}$).

A motivating example

When $\Delta = (SO_{2n+1} \times SO_{2n}, SO_{2n}, 0, 1)$, its dual is

$$\hat{\Delta} = (\mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, \mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, std, 1)$$

(std denotes the standard representation $\mathsf{Sp}_{2n} \times \mathsf{SO}_{2n} \mapsto \mathsf{Sp}_{4n^2}$).

The period integral \mathcal{P}_{Δ} is the Gan-Gross-Prasad period. The conjectured period identity is the same as in Ichino-Ikeda conjecture.

A motivating example

When $\Delta = (SO_{2n+1} \times SO_{2n}, SO_{2n}, 0, 1)$, its dual is

$$\hat{\Delta} = (\mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, \mathsf{Sp}_{2n} \times \mathsf{SO}_{2n}, std, 1)$$

(std denotes the standard representation $Sp_{2n} \times SO_{2n} \mapsto Sp_{4n^2}$).

The period integral \mathcal{P}_{Δ} is the Gan-Gross-Prasad period. The conjectured period identity is the same as in Ichino-Ikeda conjecture.

The period integral $\mathcal{P}_{\hat{\Delta}}$ is a co-period: a pairing over the whole group of an automorphic form and a theta function.

The pairing is nonzero only when the representation $\pi \times \tau$ on $\operatorname{Sp}_{2n} \times \operatorname{SO}_{2n}$ is such that π and τ correspond under theta correspondence. Thus $\pi \times \tau$ is a functorial lift from τ on SO_{2n} .

The identity for $\mathcal{P}_{\hat{\Delta}}(\phi', \Theta')$ follows from Rallis inner product formula for theta correspondence.

Strongly tempered BZSV quadruple

A quadruple Δ is strongly tempered if its dual $\hat{\Delta}$ has the form $(\hat{G}, \hat{G}, \hat{\rho}, 1)$.

Another example

$$\Delta = (\mathsf{GL}_6 \, / Z, \mathsf{GL}_2 \, / Z, 0, \iota) \text{ and } \hat{\Delta} = (\mathsf{SL}_6, \mathsf{SL}_6, \wedge^3, 1).$$

Here let P = MN be a standard parabolic in GL_6/Z with $M = GL_2^3/Z$. The centralizer of the image of ι is in M and isomorphic to $H = GL_2/Z$.

Strongly tempered BZSV quadruple

A quadruple Δ is strongly tempered if its dual $\hat{\Delta}$ has the form $(\hat{G}, \hat{G}, \hat{\rho}, 1)$.

Another example

 $\Delta = (\mathsf{GL}_6 \, / Z, \mathsf{GL}_2 \, / Z, 0, \iota) \text{ and } \hat{\Delta} = (\mathsf{SL}_6, \mathsf{SL}_6, \wedge^3, 1).$

Here let P=MN be a standard parabolic in GL_6/Z with $M=GL_2^3/Z$. The centralizer of the image of ι is in M and isomorphic to $H=GL_2/Z$.

The period integral \mathcal{P}_{Δ} is Ginzburg-Rallis period, with known relation to exterior cube L-value. As $\wedge^3: SL_6 \mapsto Sp_{20}$ actually factors through $SL_6 \mapsto \widetilde{Sp}_{20}$, the theta functions on \widetilde{Sp}_{20} restricts to SL_6 . The coperiod integral $\mathcal{P}_{\hat{\Lambda}}$ has the form:

$$\int_{[S],\epsilon]} \phi(g) \Theta(\wedge^3(g)) \ dg.$$

Question: Can we use RTF to study the corresponding co-periods $\mathcal{P}_{\hat{\Lambda}}(\phi,\Theta)$?

Strongly tempered BZSV quadruple

A quadruple Δ is strongly tempered if its dual $\hat{\Delta}$ has the form $(\hat{G}, \hat{G}, \hat{\rho}, 1)$.

Another example

 $\Delta = (\mathsf{GL}_6 \, / Z, \mathsf{GL}_2 \, / Z, 0, \iota) \text{ and } \hat{\Delta} = (\mathsf{SL}_6, \mathsf{SL}_6, \wedge^3, 1).$

Here let P=MN be a standard parabolic in GL_6/Z with $M=GL_2^3/Z$. The centralizer of the image of ι is in M and isomorphic to $H=GL_2/Z$.

The period integral \mathcal{P}_{Δ} is Ginzburg-Rallis period, with known relation to exterior cube L-value. As $\wedge^3: SL_6 \mapsto Sp_{20}$ actually factors through $SL_6 \mapsto \widetilde{Sp}_{20}$, the theta functions on \widetilde{Sp}_{20} restricts to SL_6 . The coperiod integral $\mathcal{P}_{\hat{\Delta}}$ has the form:

$$\int_{[\mathsf{SL}_6]} \phi(g) \Theta(\wedge^3(g)) \ dg.$$

Question: Can we use RTF to study the corresponding co-periods $\mathcal{P}_{\hat{\Lambda}}(\phi, \Theta)$?

Mao-Rallis, 1997

There is a relative trace formula identity relating these coperiods to Fourier coefficients on SL_2 .

Relative trace formula: an example

Let f be a Schwartz function on $SL_6(A_k)$, $(A_k$ adele ring over number field k). Define kernel function

$$K_f(x,y) = \sum_{\gamma \in \mathsf{SL}_f(k)} f(x^{-1}\gamma y)$$

Let
$$U = \{u(X) = \begin{pmatrix} 1 & X \\ & 1 \end{pmatrix}\} \subset \mathsf{SL}_6$$
 where X are 3×3 matrices.

Define distribution

$$I(f) = \int_{[\mathsf{SL}_6]} \int_{[U]} \mathsf{K}_f(g, u) \Theta(\wedge^3(g)) \psi_U(u) \ du \ dg$$

where $\psi_U(u(X)) = \psi(-Tr(X))$.

Relative trace formula: an example

Let f be a Schwartz function on $SL_6(A_k)$, $(A_k$ adele ring over number field k). Define kernel function

$$K_f(x,y) = \sum_{\gamma \in \mathsf{SL}_6(k)} f(x^{-1}\gamma y)$$

Let
$$U = \{u(X) = \begin{pmatrix} 1 & X \\ & 1 \end{pmatrix}\} \subset \mathsf{SL}_6$$
 where X are 3×3 matrices.

Define distribution

$$I(f) = \int_{[\mathsf{SL}_6]} \int_{[U]} \mathsf{K}_f(g, u) \Theta(\wedge^3(g)) \psi_U(u) \ du \ dg$$

where $\psi_U(u(X)) = \psi(-Tr(X))$.

Then there is a *correspondence* between the Schwartz functions f on SL_6 and the Schwartz functions f' on SL_2 such that the relative trace identity I(f) = J(f') holds, where J(f') is the Kuznetsov trace formula on SL_2 :

$$J(f') = \int_{[M]} \int_{[M]} K_{f'}(n_1, n_1) \psi(n_1^{-1} n_2) \ dn_1 \ dn_2.$$

Implication of RTF

From the spectral decomposition of RTF:

▶ If coperiod $\langle \phi, \Theta(\wedge^3 \cdot) \rangle$ is nonzero for $\phi \in \pi$, then π is in the image of functorial lift from SL_2 .

Implication of RTF

From the spectral decomposition of RTF:

- ▶ If coperiod $\langle \phi, \Theta(\wedge^3 \cdot) \rangle$ is nonzero for $\phi \in \pi$, then π is in the image of functorial lift from SL_2 .
- ▶ the product of the coperiod with the (U, ψ_U) coefficient on SL_6 equals the square of Fourier coefficient on SL_2 .
- ightharpoonup if we know the relation between Fourier coefficients and L-values, we can derive a relation between coperiod and L-value (proving the identity predicted in BZSV conjecture.)

correspondences.

▶ Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta

Background on this	wor	k
--------------------	-----	---

- ▶ Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta correspondences.
- ► Rallis started working on relative trace formula with Jacquet and was working on Jacquet-Rallis

Background on this work:

- ▶ Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta correspondences.
- ► Rallis started working on relative trace formula with Jacquet and was working on Jacquet-Rallis
- We quickly proved relative trace formula in one case, (corresponding to the exceptional group G_2), where the key identity turns out to be already established by Duke-Iwaniec.

Background on this work:

- ▶ Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta correspondences.
- ► Rallis started working on relative trace formula with Jacquet and was working on Jacquet-Rallis
- We quickly proved relative trace formula in one case, (corresponding to the exceptional group G_2), where the key identity turns out to be already established by Duke-Iwaniec.
- lacktriangle We were stuck for couple of months trying to guess the form of the relative trace formula identity for other cases. (Guess U and ψ_U)

Background on this work:

- Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta correspondences.
- Rallis started working on relative trace formula with Jacquet and was working on Jacquet-Rallis
- ▶ We quickly proved relative trace formula in one case, (corresponding to the exceptional group G_2), where the key identity turns out to be already established by Duke-Iwaniec.
- ▶ We were stuck for couple of months trying to guess the form of the relative trace formula identity for other cases. (Guess U and ψ_U)
- ▶ We tried to extend the work to other coperiod integrals but did not know how.

Motivation in 1995

Our guess in the G_2 case is a comparison of RTFs on SL_2 and on cubic cover of SL_2 . It is based on

Duke-Iwaniec 1993

If F is a finite field of size $q=p^r\equiv 1 \mod 3$. Let $\psi(x)=e^{2\pi i T(x)/p}$ and χ be a multiplicative character of order 3 on F^* , then

$$\sum_{x \in F} \psi(x^3 - 3x) = \sum_{x \in F^*} \chi(x)\psi(x + \frac{1}{x})$$

The RHS is a Salié sum (twisted Kloosterman sum), which appears in orbital integrals of Kuznetsov trace formula on covering groups.

The LHS determines ψ_U (which is roughly $x \mapsto \psi(-3x)$.)

Motivation in 1995

Our guess in the G_2 case is a comparison of RTFs on SL_2 and on cubic cover of SL_2 . It is based on

Duke-Iwaniec 1993

If F is a finite field of size $q=p^r\equiv 1 \mod 3$. Let $\psi(x)=e^{2\pi i T(x)/p}$ and χ be a multiplicative character of order 3 on F^* , then

$$\sum_{x \in F} \psi(x^3 - 3x) = \sum_{x \in F^*} \chi(x)\psi(x + \frac{1}{x})$$

The RHS is a Salié sum (twisted Kloosterman sum), which appears in orbital integrals of Kuznetsov trace formula on covering groups.

The LHS determines ψ_U (which is roughly $x \mapsto \psi(-3x)$.)

Rallis later pointed out the connection with Jordan algebra, then it was clear that 3x is the trace of xI_3 , and the choice of ψ_U in general is $x \mapsto \psi(-T(x))$.

Generalization

Looking back, while Rallis was fully aware of Knop's work on spherical varieties, we did not know Hamiltonian space.

Given the dual quadruple $\Delta=(\operatorname{GL}_6/Z,\operatorname{GL}_2/Z,0,\iota)$, we can see that U and ψ_U are determined by ι , through a duality on nilpotent orbits by Barbasch-Vogan (1985). The RTF comparison is between the distributions on SL_6 and SL_2 (Langlands dual of GL_2/Z .)

Generalization

Looking back, while Rallis was fully aware of Knop's work on spherical varieties, we did not know Hamiltonian space.

Given the dual quadruple $\Delta=(\operatorname{GL}_6/Z,\operatorname{GL}_2/Z,0,\iota)$, we can see that U and ψ_U are determined by ι , through a duality on nilpotent orbits by Barbasch-Vogan (1985). The RTF comparison is between the distributions on SL_6 and SL_2 (Langlands dual of GL_2/Z .)

A conjecture, Mao-Wan-Lei Zhang

Let $\Delta = (G, H, \rho_H, \iota)$ be a BZSV quadruple. We conjecture a RTF comparison between \hat{G} and \hat{H} (dual of H) which reflects the functorial lift from \hat{H} to \hat{G} .

Let $\hat{\Delta}$ be the dual of Δ . Let Δ' be the quadruple dual to $(H, H, \rho_{\Delta}, 1)$ (where ρ_{Δ} can be determined from ρ_H and ι with an explicit algorithm, $\rho_{\Delta} = \rho_H \oplus \cdots$).

- Let I(f) on \hat{G} be the distribution defined by $\mathcal{P}_{\hat{\Delta}}$ and (U, ψ_U) -coefficient (determined by ι).
- Let J(f') on \hat{H} be the distribution defined by $\mathcal{P}_{\Delta'}$ and $(N_{\hat{H}}, \psi)$ -coefficient (generic Whittaker coefficient on \hat{H} .)
- ▶ We expect a relative trace identity I(f) = J(f').

Algorithm for ρ_{Δ} :

- ightharpoonup induces homomorphism $H \times SL_2 \mapsto G$
- ▶ This induces the adjoint action of $H \times SL_2$ on the Lie algebra of G which decomposes as a representation:

$$\bigoplus_{k\in I} \rho_k \otimes \mathit{Sym}^k$$

with a finite index set I.

▶ When k is odd ρ_k is symplectic. Let

$$\rho' = \bigoplus_{k \text{ odd} \in I} \rho_k.$$

Let $\{\sigma_j|j\in J\}$ be the set of irreducible symplectic representations appearing in ρ' odd amount of times. Then $\rho_\Delta=\rho_H\oplus_{j\in J}\sigma_j$.

Motivation: If we accept BZSV duality conjecture and an extension of period integral conjecture to (U, ψ_U) coefficients (degenerate Whittaker periods), then the same L-values appear on spectral sides of the relative trace formulas.

This conjecture can reduce the question on $\mathcal{P}_{\hat{\Delta}}$ to a question on $\mathcal{P}_{\Delta'}$, where Δ' is a strongly tempered BZSV quadruple.

Knop gave a classification of quadruples $(H, H, \rho, 1)$. We can write down the corresponding duals Δ' , and the period integrals $\mathcal{P}_{\Delta'}$. Most of these periods have been studied before.

Evidence

- ▶ When $\hat{\Delta}$ is strongly tempered, (that is $\Delta = (G, G, \rho, 1)$), then the corresponding RTF identity is a trivial identity.
- ▶ RTF identity established for all cases when Δ is strongly tempered and H is of rank one. (Mao-Rallis and Mao-Wan-Zhang. ρ_{Δ} is trivial in these cases. J(f') is Kuznetsov trace formula on \hat{H})

Evidence

- ▶ When $\hat{\Delta}$ is strongly tempered, (that is $\Delta = (G, G, \rho, 1)$), then the corresponding RTF identity is a trivial identity.
- ▶ RTF identity established for all cases when Δ is strongly tempered and H is of rank one. (Mao-Rallis and Mao-Wan-Zhang. ρ_{Δ} is trivial in these cases. J(f') is Kuznetsov trace formula on \hat{H})
- ▶ When $\hat{\Delta} = (\mathsf{GL}_{2n}, \mathsf{GL}_n, 0, \iota')$ where $\iota'(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$), the dual quadruple is $\Delta = (\mathsf{GL}_{2n}, \mathsf{Sp}_{2n}, 0, 1)$. The conjecture is due to Friedberg-Jacquet (1995) comparing relative trace formula on GL_{2n} and Kuznetsov trace formula on SO_{2n+1} . The fundamental lemma is proved (Friedberg-Jacquet for unit element) when n=2.

Evidence

- ▶ When $\hat{\Delta}$ is strongly tempered, (that is $\Delta = (G, G, \rho, 1)$), then the corresponding RTF identity is a trivial identity.
- ▶ RTF identity established for all cases when Δ is strongly tempered and H is of rank one. (Mao-Rallis and Mao-Wan-Zhang. ρ_{Δ} is trivial in these cases. J(f') is Kuznetsov trace formula on \hat{H})
- ▶ When $\hat{\Delta} = (\mathsf{GL}_{2n}, \mathsf{GL}_n, 0, \iota')$ where $\iota'(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$), the dual quadruple is $\Delta = (\mathsf{GL}_{2n}, \mathsf{Sp}_{2n}, 0, 1)$. The conjecture is due to Friedberg-Jacquet (1995) comparing relative trace formula on GL_{2n} and Kuznetsov trace formula on SO_{2n+1} . The fundamental lemma is proved (Friedberg-Jacquet for unit element) when n=2.
- Switch the role of Δ and $\hat{\Delta}$, the relative trace identity compares a Kuznetsov trace formula on GL_n and a relative trace formula on GL_{2n} . It is established by Jacquet-Rallis (1993).

Friedberg-Jacquet:

$$I(f) = \int_{[S]} \int_{[N]} K_f(s,n) \psi_S(s) \psi_N(n) ds dn$$

where (N, ψ_N) is Whittaker coefficient, $S = \{s(g, v) = \begin{pmatrix} g \\ g \end{pmatrix} \begin{pmatrix} 1 & v \\ 1 \end{pmatrix}\}$ with $\psi_S(s(g, v)) = \psi(T(v))$. Compared with Kuznetsov on odd orthogonal group.

Friedberg-Jacquet:

$$I(f) = \int_{S_1} \int_{S_N} K_f(s, n) \psi_S(s) \psi_N(n) ds dn$$

where (N, ψ_N) is Whittaker coefficient, $S = \{s(g, v) = \begin{pmatrix} g \\ g \end{pmatrix} \begin{pmatrix} 1 & v \\ 1 \end{pmatrix}\}$ with $\psi_S(s(g, v)) = \psi(T(v))$. Compared with Kuznetsov on odd orthogonal group.

Jacquet-Rallis (the other one)

$$I(f) = \int_{[S_{n-1}]} \int_{[N]} K_f(s,n) \psi_N(n) ds dn$$

where ψ_N is a degenerate character on N: $\psi_N(\begin{pmatrix} n_1 & v \\ & n_2 \end{pmatrix}) = \psi(n_1 n_2)$ with ψ a generic character.

Compared with Kuznetsov on GL_n .

More Examples

When $\Delta = (SO_{2n+1} \times SO_{2n}, SO_{2n}, 0, 1)$ and $\hat{\Delta} = (Sp_{2n} \times SO_{2n}, Sp_{2n} \times SO_{2n}, std, 1)$. The comparison is between RTF on $Sp_{2n} \times SO_{2n}$ and on SO_{2n} and can be proved using theta correspondence.

More Examples

- When $\Delta = (SO_{2n+1} \times SO_{2n}, SO_{2n}, 0, 1)$ and $\hat{\Delta} = (Sp_{2n} \times SO_{2n}, Sp_{2n} \times SO_{2n}, std, 1)$. The comparison is between RTF on $Sp_{2n} \times SO_{2n}$ and on SO_{2n} and can be proved using theta correspondence.
- When $\hat{\Delta} = (GL_n, GL_{n-1} \times GL_1, 0, 1)$ the dual quadruple is $\Delta = (GL_n, GL_2, 0, \iota)$. The comparison of relative traces is between GL_n and GL_2 which was conjectured by Mao-Rallis (1998). The proof can be given using theta correspondence. (Switch the role of Δ and $\hat{\Delta}$ gives a relative trace formula comparison that gives a lifting from $GL_{n-1} \times GL_1$ to GL_n which is just Eisenstein series construction.) When n=3, the RTF was studied in my Compte Rendu note in 1992.