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An example
The theme of the talk is the relation between period integrals of automorphic forms and
L−values.
Waldspurger’s formula: Fourier coefficients are related to values of L−functions.

If f is weight 2k cusp form of level 1, with a(1) = 1.
g the corresponding level 4 weight k + 1

2 form, in Kohnen plus space.

g(z) =
∑
n>0

c(n)e2πinz , c(n) = 0 when (−1)kn ≡ 2, 3 mod 4

Kohnen-Zagier 1981

L(f , k)

∥f ∥2
(k − 1)!

πk
=

|c(1)|2

∥g∥2
.

There are two aspects of this result:
1. Fourier coefficient of g(z) is related to L−value attached to g .
2. The correspondence between f and g is a case of Langlands functoriality, L−value of g
equals to L-value of f .
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Gan-Gross-Prasad, Ichino-Ikeda conjecture
If π1, π2 are irreducible automorphic representations of SOn and SOm with n > m, let
ϕ1 ∈ π1, ϕ2 ∈ π2, then

|
∫
[SOm]

Fϕ1(g)ϕ2(g) dg |2

∥ϕ1∥2∥ϕ2∥2
∼

L( 12 , π1 × π2)

L(1, π1,Ad)L(1, π2,Ad)
.

Here ∼ means the equality holds up to some local integrals over finitely many local places and
a global factor in a fixed finite set.
Fϕ1 is a Fourier coefficient of ϕ1:

Fϕ1(g) =
∫
[U]

ϕ1(ug)ψ
−1(u) du

for a suitable unipotent subgroup U of SOn and a suitable ψ.

When m = 1 the conjecture is about the relation between Fourier coefficient and L−value.
Main progress: For unitary group, the conjecture is known for n = m + 2d + 1.
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Relative trace formula: the method used to prove Gan-Gross-Prasad for unitary group.
Work by W. Zhang, Z.Yun, Beuzart-Plessis-Chaudouard (2025) based on a relative trace
formula conjectured by Jacquet-Rallis:
Relate the conjecture to a similar statement on general linear group, where the identity can be
proved using Rankin-Selberg method.

Rest of the talk:
Describe the duality conjecture of Ben-Zvi-Sakellaridis-Venkatesh, which is about both
functoriality and period integral.
Discuss a relative trace formula approach to BZSV duality.
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BZSV duality is about two dual quadruples ∆ and ∆̂.
∆ = (G ,H, ρH , ι) where

▶ G is a split reductive group

▶ H is a subgroup of G

▶ ι is a homomorphism SL2 7→ G whose image commutes with H.

▶ ρH is a symplectic anomaly free representation of H (meaning we can define Theta
function on H.)

▶ The Hamiltonian space associated to ∆ is hyperspherical. (with respect to ι, H is not too
small–refer questions to Y.S.)

The period integral attached to ∆ is (for ϕ ∈ π on G )

P∆(ϕ,Θ) =

∫
[H]

Pι(ϕ)(h)Θ(h) dh.

Here Pι is a Fourier coefficient of ϕ determined by ι, and Θ is in a space of theta functions on
H determined by ρH .
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BZSV duality conjecture 2025+
Given ∆ = (G ,H, ρ, ι), there is ∆̂ = (G ′,H ′, ρ′, ι′), so that

▶ G ′ = Ĝ is the Langlands dual of G .

▶ If P∆(ϕ,Θ) is nonvanishing, then π is a functorial lift from a representation Π of Ĥ ′ (the
dual of H ′). (More precisely, the Arthur parameter of π factors through
ι′ : H ′ × SL2 7→ Ĝ .)

▶
|P∆(ϕ,Θ)|2

∥ϕ∥2∥Θ∥2
∼ L(Π, ρ′, ι′)

L(1,Π,Ad)2
.

Here L(Π, ρ′, ι′) is a product of values of L−functions of Π determined by ρ′ and ι′. These
are not necessarily central values of the L−function.

▶ The dual assertions hold for the period P∆̂(ϕ
′,Θ′) on G ′.
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▶ G ′ = Ĝ is the Langlands dual of G .

▶ If P∆(ϕ,Θ) is nonvanishing, then π is a functorial lift from a representation Π of Ĥ ′ (the
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A motivating example
When ∆ = (SO2n+1 ×SO2n,SO2n, 0, 1), its dual is

∆̂ = (Sp2n ×SO2n,Sp2n ×SO2n, std , 1)

(std denotes the standard representation Sp2n ×SO2n 7→ Sp4n2).

The period integral P∆ is the Gan-Gross-Prasad period. The conjectured period identity is the
same as in Ichino-Ikeda conjecture.
The period integral P∆̂ is a co-period: a pairing over the whole group of an automorphic form
and a theta function.
The pairing is nonzero only when the representation π× τ on Sp2n ×SO2n is such that π and τ
correspond under theta correspondence. Thus π × τ is a functorial lift from τ on SO2n.
The identity for P∆̂(ϕ

′,Θ′) follows from Rallis inner product formula for theta correspondence.
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Strongly tempered BZSV quadruple
A quadruple ∆ is strongly tempered if its dual ∆̂ has the form (Ĝ , Ĝ , ρ̂, 1).

Another example
∆ = (GL6 /Z ,GL2 /Z , 0, ι) and ∆̂ = (SL6,SL6,∧3, 1).
Here let P = MN be a standard parabolic in GL6 /Z with M = GL32 /Z . The centralizer of the
image of ι is in M and isomorphic to H = GL2 /Z .

The period integral P∆ is Ginzburg-Rallis period, with known relation to exterior cube L−value.

As ∧3 : SL6 7→ Sp20 actually factors through SL6 7→ S̃p20, the theta functions on S̃p20 restricts
to SL6. The coperiod integral P∆̂ has the form:∫

[SL6]

ϕ(g)Θ(∧3(g)) dg .

Question: Can we use RTF to study the corresponding co-periods P∆̂(ϕ,Θ)?

Mao-Rallis, 1997
There is a relative trace formula identity relating these coperiods to Fourier coefficients on SL2.
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Relative trace formula: an example

Let f be a Schwartz function on SL6(Ak), (Ak adele ring over number field k). Define kernel
function

Kf (x , y) =
∑

γ∈SL6(k)

f (x−1γy)

Let U = {u(X ) =

(
1 X

1

)
} ⊂ SL6 where X are 3× 3 matrices.

Define distribution

I (f ) =

∫
[SL6]

∫
[U]

Kf (g , u)Θ(∧3(g))ψU(u) du dg

where ψU(u(X )) = ψ(−Tr(X )).

Then there is a correspondence between the Schwartz functions f on SL6 and the Schwartz
functions f ′ on SL2 such that the relative trace identity I (f ) = J(f ′) holds, where J(f ′) is the
Kuznetsov trace formula on SL2:

J(f ′) =

∫
[N]

∫
[N]

Kf ′(n1, n1)ψ(n
−1
1 n2) dn1 dn2.
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Implication of RTF

From the spectral decomposition of RTF:

▶ If coperiod ⟨ϕ,Θ(∧3·)⟩ is nonzero for ϕ ∈ π, then π is in the image of functorial lift from
SL2.

▶ the product of the coperiod with the (U, ψU) coefficient on SL6 equals the square of
Fourier coefficient on SL2.

▶ if we know the relation between Fourier coefficients and L−values, we can derive a relation
between coperiod and L−value (proving the identity predicted in BZSV conjecture.)
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Background on this work:

▶ Rallis encountered these coperiods in the work with Ginzburg-Soudry on exceptional theta
correspondences.

▶ Rallis started working on relative trace formula with Jacquet and was working on
Jacquet-Rallis

▶ We quickly proved relative trace formula in one case, (corresponding to the exceptional
group G2), where the key identity turns out to be already established by Duke-Iwaniec.

▶ We were stuck for couple of months trying to guess the form of the relative trace formula
identity for other cases. (Guess U and ψU)

▶ We tried to extend the work to other coperiod integrals but did not know how.
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Motivation in 1995

Our guess in the G2 case is a comparison of RTFs on SL2 and on cubic cover of SL2. It is
based on

Duke-Iwaniec 1993
If F is a finite field of size q = pr ≡ 1 mod 3. Let ψ(x) = e2πiT (x)/p and χ be a multiplicative
character of order 3 on F ∗, then∑

x∈F

ψ(x3 − 3x) =
∑
x∈F∗

χ(x)ψ(x +
1

x
)

The RHS is a Salié sum (twisted Kloosterman sum), which appears in orbital integrals of
Kuznetsov trace formula on covering groups.
The LHS determines ψU (which is roughly x 7→ ψ(−3x).)

Rallis later pointed out the connection with Jordan algebra, then it was clear that 3x is the
trace of xI3, and the choice of ψU in general is x 7→ ψ(−T (x)).
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Generalization

Looking back, while Rallis was fully aware of Knop’s work on spherical varieties, we did not
know Hamiltonian space.
Given the dual quadruple ∆ = (GL6 /Z ,GL2 /Z , 0, ι), we can see that U and ψU are
determined by ι, through a duality on nilpotent orbits by Barbasch-Vogan (1985). The RTF
comparison is between the distributions on SL6 and SL2 (Langlands dual of GL2 /Z .)

A conjecture, Mao-Wan-Lei Zhang
Let ∆ = (G ,H, ρH , ι) be a BZSV quadruple. We conjecture a RTF comparison between Ĝ and
Ĥ (dual of H) which reflects the functorial lift from Ĥ to Ĝ .
Let ∆̂ be the dual of ∆. Let ∆′ be the quadruple dual to (H,H, ρ∆, 1) (where ρ∆ can be
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Generalization
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Algorithm for ρ∆:

▶ ι induces homomorphism H × SL2 7→ G

▶ This induces the adjoint action of H × SL2 on the Lie algebra of G which decomposes as a
representation:

⊕k∈Iρk ⊗ Symk

with a finite index set I .

▶ When k is odd ρk is symplectic. Let

ρ′ = ⊕k odd∈Iρk .

▶ Let {σj |j ∈ J} be the set of irreducible symplectic representations appearing in ρ′ odd
amount of times. Then ρ∆ = ρH ⊕j∈J σj .



Motivation: If we accept BZSV duality conjecture and an extension of period integral
conjecture to (U, ψU) coefficients (degenerate Whittaker periods), then the same L−values
appear on spectral sides of the relative trace formulas.

This conjecture can reduce the question on P∆̂ to a question on P∆′ , where ∆′ is a strongly
tempered BZSV quadruple.

Knop gave a classification of quadruples (H,H, ρ, 1). We can write down the corresponding
duals ∆′, and the period integrals P∆′ . Most of these periods have been studied before.



Evidence

▶ When ∆̂ is strongly tempered, (that is ∆ = (G ,G , ρ, 1)), then the corresponding RTF
identity is a trivial identity.

▶ RTF identity established for all cases when ∆ is strongly tempered and H is of rank one.
(Mao-Rallis and Mao-Wan-Zhang. ρ∆ is trivial in these cases. J(f ′) is Kuznetsov trace
formula on Ĥ)

▶ When ∆̂ = (GL2n,GLn, 0, ι
′) where ι′(

(
1 1
0 1

)
=

(
In In
0 In

)
), the dual quadruple is

∆ = (GL2n,Sp2n, 0, 1). The conjecture is due to Friedberg-Jacquet (1995) comparing
relative trace formula on GL2n and Kuznetsov trace formula on SO2n+1. The fundamental
lemma is proved (Friedberg-Jacquet for unit element) when n = 2.

▶ Switch the role of ∆ and ∆̂, the relative trace identity compares a Kuznetsov trace formula
on GLn and a relative trace formula on GL2n. It is established by Jacquet-Rallis (1993).
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Friedberg-Jacquet:

I (f ) =

∫
[S]

∫
[N]

Kf (s, n)ψS(s)ψN(n) ds dn

where (N, ψN) is Whittaker coefficient, S = {s(g , v) =
(

g
g

)(
1 v

1

)
} with

ψS(s(g , v)) = ψ(T (v)). Compared with Kuznetsov on odd orthogonal group.

Jacquet-Rallis (the other one)

I (f ) =

∫
[Sp2n]

∫
[N]

Kf (s, n)ψN(n) ds dn

where ψN is a degenerate character on N: ψN(

(
n1 v

n2

)
) = ψ(n1n2) with ψ a generic

character.
Compared with Kuznetsov on GLn.
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More Examples

▶ When ∆ = (SO2n+1 ×SO2n,SO2n, 0, 1) and ∆̂ = (Sp2n × SO2n,Sp2n ×SO2n, std , 1). The
comparison is between RTF on Sp2n ×SO2n and on SO2n and can be proved using theta
correspondence.

▶ When ∆̂ = (GLn,GLn−1 ×GL1, 0, 1) the dual quadruple is ∆ = (GLn,GL2, 0, ι). The
comparison of relative traces is between GLn and GL2 which was conjectured by
Mao-Rallis (1998). The proof can be given using theta correspondence. (Switch the role
of ∆ and ∆̂ gives a relative trace formula comparison that gives a lifting from
GLn−1 × GL1 to GLn which is just Eisenstein series construction.)
When n = 3, the RTF was studied in my Compte Rendu note in 1992.



More Examples

▶ When ∆ = (SO2n+1 ×SO2n,SO2n, 0, 1) and ∆̂ = (Sp2n × SO2n,Sp2n ×SO2n, std , 1). The
comparison is between RTF on Sp2n ×SO2n and on SO2n and can be proved using theta
correspondence.

▶ When ∆̂ = (GLn,GLn−1 ×GL1, 0, 1) the dual quadruple is ∆ = (GLn,GL2, 0, ι). The
comparison of relative traces is between GLn and GL2 which was conjectured by
Mao-Rallis (1998). The proof can be given using theta correspondence. (Switch the role
of ∆ and ∆̂ gives a relative trace formula comparison that gives a lifting from
GLn−1 × GL1 to GLn which is just Eisenstein series construction.)
When n = 3, the RTF was studied in my Compte Rendu note in 1992.


